RocketSTEM Issue #5 - January 2014 | Page 22

N ature has an uncanny knack of producing some of the most spectacular astronomical events we can witness, the likes of Solar eclipses, meteor showers and other phenomenon that never fail to impress. There is one event however, that once you witness it, it will be burnt into your memory and will stay with you for the rest of your life, this is witnessing the Aurora. Aurora is a Latin word for “Sunrise or Dawn” and in Roman mythology Aurora was the goddess of the dawn. “Borealis” means pertaining to the North and “Australis” to the South. Auroral displays have been known about for 1000’s of years and for those cultures in the Polar regions of the Earth they have witnessed some of the most breathtaking displays seen, but the Aurora, provided conditions are right, can be seen from many lower latitude locations around the world provided conditions are right. To start to explain it we must first look at our own star, the Sun. Our sun is the powerhouse at the heart of the Solar system a huge ball of gas with a nuclear furnace at its heart. Accounting for 99% of the mass of our solar system the sun is by far the largest body in our local neighbourhood. The sun itself has a diameter of about 864,938 miles and is primarily composed of Hydrogen. In the core region the Hydrogen is converted into Helium by a process called nuclear fusion the by-product of which is energy and heat. The Sun is losing approximately 4million tonnes of itself each and every second as energy and if we could turn that into power we could perhaps keep a city the size of New York or London in electricity for many 1000’s of years. The Sun is very powerful! An illustration of the structure of the Sun. 20 20 As with the Earth and the other planets, the Sun also rotates about its axis, but in a different way to planet Earth. Here on Earth we say the earth revolves around each and every 24 hours (23h 56m4s) regardless of where you are, the sun is different! It has what we call “differential rotation”. All the matter in the Sun is in the form of gas and at high temperatures, plasma. This makes it possible for the Sun to rotate faster at its equator than it does at higher latitudes and this is where the sun begins to have an effect. At the polar regions of the sun it rotates in approximately 35 days and at the solar equator in approximately 25 days and this gives rise to distortions in the sun and its magnetic field. This rotational difference in the Sun causes its magnetic field lines to become twisted and much distorted, imagine a rubber band that has been continually spun and twisted together. Over time Graphic: Kelvinsong via Wikipedia.com www.RocketSTEM.org