RocketSTEM Issue #4 - November 2013 | Page 15

Mars Odyssey NASA’s Mars Odyssey orbiter sets a new record for longevity with each passing day and has worked longer at the Red Planet than any other spacecraft in human history. It was launched on April 7, 2001 atop a Delta II rocket from Cape Canaveral Air Force Station, Florida. After an interplanetary journey of hundreds of millions of miles, it arrived at Mars way back on Oct. 24, 2001 and fired its main engine to brake the crafts speed and allow it to be captured by Mars and enter a highly elliptical orbit. The previous Martian record holder was the Mars Global Surveyor (MGS) orbiter which operated in orbit from Sept. 11, 1997 to Nov. 2, 2006 until contact was lost following a computer glitch. A technique known as aerobraking was used over the next three months to fly Odyssey through the upper atmosphere of Mars and utilize drag to gradually lower the crafts altitude and eventually enter its science mapping orbit. Odyssey has made numerous high impact scientific discoveries along the way since science operations began in February 2002. Within a few months, Odyssey made the key discovery of the entire mission when it found that the polar regions harbored substantial caches of water ice within a meter of the dry surface of Mars. The detection of water – in the form of hydrogen — from orbit using the crafts Gamma Ray Spectrometer led directly to the proposal for the Phoenix mission which confirmed the discovery in 2008. Phoenix landed directly on top of vast sheets of frozen water ice in the northern polar region of Mars and scooped up samples of ice for analysis by the landers science suite. Odyssey also relayed most of the science data from Spirit, Opportunity and Phoenix and is continuing that task for the new rover Curiosity. Mars Odyssey is equipped with three primary science instruments; • THEMIS (Thermal Emission Imaging System), for determining the distribution of minerals, particularly those that can only form in the presence of water; • GRS (Gamma Ray Spectrometer), for determining the presence of 20 chemical elements on the surface of Mars, including hydrogen in the shallow subsurface (which acts as