RocketSTEM Issue #3 - October 2013 | Page 61

‘La Nada’ climate pattern lingers New remote sensing data from NASA’s Jason-2 satellite show near-normal sea-surface height conditions across the equatorial Pacific Ocean. This neutral, or “La Nada” event, has stubbornly persisted for 16 months, since spring 2012. Models suggest this pattern will continue through the spring of 2014, according to the National Weather Service’s Climate Prediction Center. “Without an El Niño or La Niña signal present, other, less predictable, climatic factors will govern fall, winter and spring weather conditions,” said climatologist Bill Patzert of NASA’s Jet Propulsion Laboratory, Pasadena, Calif. Longrange forecasts are most successful during El Niño and La Niña episodes. The “in between” ocean state, La Nada, is the dominant condition, and is frustrating for long-range forecasters. It’s like driving without a decent road map -- it makes forecasting difficult.” The near-normal conditions are shown in a new image (as areas shaded in green), based on the average of 10 days of data centered on Aug. 27, 2013. For the past several decades, about half of all years have experienced La Nada conditions, compared to about 20 percent for El Niño and 30 percent for La Niña. Patzert noted that some of the wettest and driest winters occur during La Nada periods. “Neutral infers something benign, but in fact if you look at these La Nada years when neither El Niño nor La Niña are present, they can be the most volatile and punishing. As an example, the continuing, deepening drought in the American West is far from ‘neutral,’” he said. The height of the sea water relates, in part, to its temperature, and thus is an indicator of the amount of heat stored in the ocean below. As the ocean warms, its level rises; as it cools, its level falls. Yellow and red areas indicate where the waters are relatively warmer and Artist’s concept of the Jason-2 spacecraft in space. have expanded above normal sea level, while green (which dominates in this image) indicates near-normal sea level, and blue and purple areas show where the waters are relatively colder and sea level is lower than normal. Abovenormal height variations along the equatorial Pacific indicate El Niño conditions, while below-normal height variations indicate La Niña conditions. The temperature of the upper ocean can have a significant influence on weather patterns and climate. For a more detailed explanation of what this type of image means, visit: http://sealevel. jpl.nasa.gov/science/elninopdo/ latestdata/. This latest image highlights the processes that occur on time scales of more than a year, but usually less than 10 years, such as El Ni