RocketSTEM Issue #14 - March 2017 | Page 69

Getting up close Since entering into orbit around Ceres on 6th March 2015, after its two and a half year cruise from Vesta, Dawn’s science instruments have been revealing its nature in detail from a series of ever-closer orbits. Following a brief period in a ‘rotation characterisation’ orbit, Dawn spi- ralled inwards and took up its ‘Survey orbit’ 4,430km (2,750 miles) out on 6th June 2015, from which it made detailed global maps of the dwarf planet with its framing camera and visible and infrared mapping spec- trometer (VIR). Following a problem with one of its ion engines, which was resolved successfully, Dawn then descended to reach its High-Altitude Mapping Orbit (HAMO) at 1,480 km (920 miles) in August 2015. From this altitude, it spent a period of two months mapping Ceres at higher resolution, again with the framing camera and VIR, before spiralling slowly inwards once more to reach a Low-Altitude Mapping Orbit (LAMO) in Decem- ber 2015, a mere 375km (233 miles) above the Cerean surface. From this low altitude the spacecraft’s instruments, particularly its gamma-ray and neutron detector (GRaND), were focused on trying to determine the chemical composition at and just below the surface of Ceres. DAWN’S SPIRAL TRANSFER FROM HAMO TO LAMO: This diagram shows Dawn’s patient spiral descent of 160 revolu- tions over a two-month period towards its closest orbit around Ceres, using its ion thrusters. For clarity, the trajectory is shown changing from blue to red as time progresses over this period. Red dashed sections are where ion thrusting was stopped so the spacecraft could point its main antenna towards Earth. Once in LAMO, closer to Ceres than the ISS is to Earth, the spacecraft was orbiting Ceres every 5.5 hours. Credit: NASA/JPL-Caltech From LAMO, Dawn was also able to probe deeper down to try and discover the dwarf planet’s internal structure. By using radiometric data – that is, detecting tiny variations in the spacecraft’s orbit from Doppler shifts in the radio waves of signals transmitted back to Earth - the grav- ity field and, thus, internal distribution of mass in Ceres’ interior can be determined. As Marc Rayman explains ‘If, for example, there is a large region of unusually dense material, even if deep underground, the craft will speed up slightly as it travels toward it. After Dawn passes overhead, 67 www. RocketSTEM .org 67