RocketSTEM Issue #14 - March 2017 | Page 38

Fueling of the Shuttle required a lot of propellant as the External Tank held over 500,000 gallons of propellants. Two spheres on opposite sides of the pad perimeter, approxi- mately 3,000 feet apart, held the propellants until they were pumped into the Shuttle’s External Tank. One tank could hold up to 900,000 gallons of liquid oxygen at –297 degrees Fahrenheit while the other tank could hold 850,000 gallons of liquid hydrogen at –423 degrees Fahrenheit. The propellants were transferred from the storage tanks in vacuum-jacketed lines that feed into the orbiter and External Tank via the tail service masts on the mobile launcher platform. The Apollo blast room was mothballed and instead a new Emergency Egress System was installed. The new system was located at the 195 level of the FSS, the same height as the Crew Access Arm, and is a slide wire system with baskets for astronauts and pad workers to speedily escape the pad in the event of an emergency. In 135 launches, the system was never used, however if it had been, fire nozzles would release heavy sprays of water over the pad area. Remember earlier I mentioned how the 195 foot level had a solid floor? The water spray would be so heavy that the crew and pad per- sonnel would only be able to see their feet and the floor, so a bright yellow pathway was painted on the floor, sometimes humorously referred to by the pad and crew as the Yellow Brick road, this would lead them to the escape baskets. At the slidewire basket landing area, STS-116 crew members sit in one of the baskets used for emergency egress away from the launch pad. From left are Pilot William Oefelein and Mission Specialists Joan Higginbotham and Christer Fuglesang. Credit: NASA/Kim Shiflett Seven baskets and slide wires were in place, each basket capable of transporting three people to the ground some 1200 feet to the west of the pad in just 90 seconds. The basket would reach a top speed of 55 MPH and would be slowed by a drag chain before coming to a complete stop in the catch net at the end of the system. When reaching the ground, the crew and pad personnel would find a bun- ker and one or more M-113 Armored Vehicles. In the event of an imminent detonation, the bunker could provide the best protection; otherwise they would board the M-113 Armored Vehicles and make a hasty departure to a safe zone more than a mile away from the pad. Another addition to the pad would be the Sound Suppres- sion Water System. With the orbiter so close to the Mobile Launcher, the sound waves produced by the three Space Shuttle Main Engines and the massive Solid Rocket Boosters upon ignition could have possibly damaged anything in the orbiter’s cargo bay and possibly the orbiter itself. The solution was to reduce the sound waves with a flow of water over the Mobile Launch Platform and the pad itself. A 300,000 gallon water tank located on the northeast side of the pad contains 36 36 www. RocketSTEM .org