RocketSTEM Issue #13 - September 2016 | Page 91

Figure 7: Polygonal cells and glacial flow on the northern margins of Sputnik Planum. Credit: NASA/JHUAPL/SwRI The surface of the plain appears relatively young, being uncratered, and is broken into a network of polygonal cells, 10 to 40km across, with their centres rising some tens of metres above their margins, the latter characterised by darker X- and Y-shaped junctions. Modelling would indicate that this giant basin is probably filled with a 5 to 10 km-thick layer of frozen volatiles: nitrogen, methane, and carbon monoxide ices, but dominated by nitrogen ice. Within this layer solid-state convection may be occurring, with rising plumes of ice creating the surface polygons, at the edges of which the cooled material sinks back down. This can be likened to what happens in a pan of soup being gently heated from below, or a ‘cosmic lava lamp.’ The overturn rate is estimated at 1.5-3cm per year, which would put renewal times of Spunik Planum’s surface at 500,000 to 1 million years, very young by geological standards. This would explain the absence of craters on its surface. The big questions posed by these discoveries are how such activity is driven on Pluto and what internal heat source(s) could create convection in this way? The accretional heat from the formation of Pluto would long since have been lost to space, as would any residual heat from early impacts, such as the one believed Figure 8: Evidence of glacial flow channels is seen in this oblique view of Sputnik Planum. to have created the PlutoCredit: NASA/JHUAPL/SwRI Charon system. And there is no nearby large body to create tidal heating within Pluto, as is the case for example, for Jupiter’s moons Io and Europa. This leaves radiogenic heating – heat released slowly by the decay of radioactive isotopes within the dwarf planet. While an isotope such as 26Al, with a short half-life of only 730,000 years, would have been depleted rapidly in the early days of the solar system, one possible 89 www.RocketSTEM .org 89