RocketSTEM Issue #12 - July 2015 | Page 32

A close-up view of the ‘Genesis Rock’ collected by astronauts Dave Scott and Jim Irwin on the mission’s second moonwalk. Credit: NASA described, “we could look over and see some of this white rock. Immediately, I saw white, I saw light green and I saw brown. But there was one piece of white rock that looked different from any of the others. We didn’t rush over to it; we went about our job the usual way. First I took down-Sun shots and a locator shot about 45 degrees from the Sun-line and Dave took a couple of cross-Sun shots.” Scott and Irwin slowly threaded their way between the craters to the strange white rock. “It was lifted up on a pedestal,” Irwin wrote. “The base was a dirty old rock covered with lots of dust that sat there by Working at Spur Crater during the second EVA. Credit: NASA via Retro Space Images atmosphere or haze, almost knocked Dave Scott’s socks off. Their first task was to find a small “drill hole” crater that could have excavated material from the mountain, but the flank was remarkably clean. Scott curtailed the planned drive and they sampled a small crater and then an isolated boulder which was coated in greenish material. The green hue captivated Jim Irwin, whose Irish descent and birthday on St. Patrick’s Day—and the fact that he had stowed some shamrocks in the lunar module—made this a special find. At first, the two men wondered if their eyes or Sun visors were playing tricks on them, but when it was unpacked a few weeks later in the Lunar Receiving Laboratory (LRL), their initial impressions would be confirmed: it was green, made entirely of minuscule spheres of glass, tiny droplets of magma spewed from a fissure by a “fire fountain”. In time, it and other samples would contribute to making Apollo 15 one of the greatest voyages of discovery ever undertaken in human history. Finally, they headed for Spur Crater. “As soon as we got there,” Irwin 30 30 itself, almost like an outstretched hand. Sitting on top of it was a white rock almost free of dust. From four feet away I could see unique long crystals with parallel lines, forming striations.” Scott used tongs to pick it up and held it close to his visor to inspect it. The rock was about the same size as his fist and even as he lifted it, some of its dusty coating crumbled away…and he saw large, white crystals. “Aaaahh!” he exulted. “Oh, man!” added Irwin. The rock was almost entirely “plagioclase”—an important tectosilicate feldspar mineral used by petrologists on Earth to help determine the composition, origin and evolution of igneous rocks—and from their expeditions into the hills of the San Gabriels, Scott recognized it as “anorthosite”, which is the purest form of plagioclase. For some time, lunar geologists had suspected that anorthosite formed the Moon’s original, primordial crust; indeed, data from the unmanned Surveyor 7 lander had suggested its presence in the ejecta of the crater Tycho and tiny fragments of it had actually been found in samples from both Apollo 11’s landing site at Tranquility Base and Apollo 12’s site in the Ocean of Storms. “Explaining why most of the Moon’s crust should be composed of anorthosite,” wrote Andrew Chaikin in A Man on the Moon, “led some geologists to an extraordinary scenario. Within the infant satellite, they proposed, there was so much heat that the entire outer shell became an ocean of molten rock. As this “magma ocean” cooled, minerals crystallized. The heavier species, including the iron- and magnesiumrich crystals, sank to the bottom. The lighter crystals, specifically, the mineral [aluminium-rich] plagioclase floated to the top.” Recognizing the find as probably a piece of the Moon’s primordial crust, Scott could hardly contain his enthusiasm. “Guess what we just found!” he radioed. “I think we just found what we came for!” “Crystalline rock, huh?” said Irwin. “Yessir,” replied Scott. After briefly describing the rock’s www.RocketSTEM .org