RocketSTEM Issue #10 - February 2015 | Page 32

an idea of the scale of this feature. The event sent monumental seismic shock waves through Vesta which caused many faults and troughs around its equatorial regions, as well as blanketing the southern half of the protoplanet with a thick layer of debris. This explains the less cratered nature of the south in contrast to the northern regions. Beyond the rim of Rheasilvia, the rest of Vesta’s tormented surface is no less spectacular, and the stories it tells of the distant past will gradually be deciphered by Dawn’s science team. The spacecraft broke free from Vesta’s sphere of influence in September 2012 to head out towards its next destination, but its mission there is far from over. Its sensors have returned sufficient data on this unique world to keep mission scientists busy for decades, together with the continuing study of meteorites here on Earth. Onward to Ceres The Dawn Mission Trajectory. Credit: NASA-JPL Having begun to unlock the secrets of one new world, we look forward to discovering another unique member of our Sun’s family of worlds. Ceres, named for the Roman goddess of corn and harvests, grows ever more clear in Dawn’s cameras, becoming a whole new world for us. This will be, to quote Dr. Rayman, ‘an ambitious and exciting exploration of the alien world ahead… an intriguing and mysterious orb that has beckoned for more than two centuries.…. Our goal is to develop that faint smudge of light amidst the stars into a richly detailed portrait.’ A major source of heating at Vesta will have been impacts, much more frequent during the accretion process when there was a lot more material to be swept up in the inner solar system. There is much evidence of these impacts, both on its heavily cratered and fractured surface, and also in fragments originating from them, many Since its discovery on 1st January 1801 by Giuseppe of which end up falling to Earth and other terrestrial Piazzi, Ceres has been considered firstly as a planet, then bodies as meteorites. An estimated 6% of all meteorites an asteroid (or minor planet) and, since 2006, as a dwarf observed on our own planet come from Vesta. Analysis planet. However we classify it today, with a mean diamof materials found in them eter of 952km (591 miles) it provides supporting eviis the largest body between dence for differentiation in the Sun and Pluto yet to be the growing protoplanet. visited by a space probe, On Vesta itself the scale and appears to be very and violence of impacts different from Vesta and early in its history is borne most other bodies in the out by at least seven cramain asteroid belt. It has a ters of over 150km in diamdensity closer to that of the eter. Most impressive is the big icy moons of the giant scar of an impact which planets, like Ganymede may have come close (1.93 g/cm3) or Titan (1.88 to smashing Vesta apart, g/cm3). Ceres is expected the giant crater named to present, beneath a thin Rheasilvia. The impactor dusty crust, a differentiated was probably as much structure, but one with a as 50km (30 miles) across, water ice mantle some and the resulting basin in 100km (60 miles) thick surVesta’s south polar region rounding a rocky, silicate is 500km (300 miles) across, core. The presence of ice is 12km (7.5 miles) deep and expected to have created is distinguished by a central differences in the dwarf peak which rises to almost planet’s surface features, 25km (15 miles) above the when compared to those basin floor. The image on of Vesta, due to the more Vesta’s battered surface as imaged by Dawn’s framing cameras (full mosaic). Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA the preceeding page gives flexible nature of ice than 30 30 www.RocketSTEM .org