REVISTA CIENTÍFICA The Italian Pasta | Page 26

GAUSS Y EL ÁLGEBRA LINEAL El método de Gauss consiste en transformar un sistema de ecuaciones en otro equivalente de forma que éste sea escalonado. Para facilitar el cálculo vamos a transformar el sistema en una matriz, en la que pondremos los coeficientes de las variables y los términos independientes (separados por una recta). Matriz En matemáticas, la eliminación de Gauss- Jordan, llamada así debido a Carl Friedrich Gauss y Wilhelm Jordan, es un algoritmo del álgebra lineal para determinar las soluciones de un sistema de ecuaciones lineales, encontrar matrices e inversas. Un sistema de ecuaciones se resuelve por el método de Gauss cuando se obtienen sus soluciones mediante la reducción del sistema dado a otro equivalente en el que cada ecuación tiene una incógnita menos que la anterior. El método de Gauss transforma la matriz de coeficientes en una matriz triangular superior.  COMBINACIÓN LINEAL DE VECTORES Teniendo en cuenta que los vectores se pueden sumar entre sí y que se pueden multiplicar por números reales, podremos obtener vectores haciendo estas operaciones de suma y multiplicación. Supongamos que un vector v es el resultado de multiplicar un vector a por 5 y sumarle otro vector b(v = 5a + b), en este caso diremos que v es una combinación lineal de a y b. Dado un conjunto de vectores, si ninguno de ellos es combinación lineal de los demás, se dice que ese conjunto de vectores son linealmente independientes y linealmente dependientes en caso contrario. Un vector es combinación lineal de otros vectores si se puede obtener mediante operaciones de suma de otros vectores. LA TEORÍA DE LOS NÚMEROS La teoría de números es la rama de las matemáticas que estudia las propiedades de los números, en particular los enteros, pero más en general, estudia las propiedades de los elementos de Dominios Enteros (Anillos conmutativos con elemento unitario y cancelación) así como diversos problemas derivados de su estudio. Contiene una cantidad considerable de problemas que podrían ser comprendidos por "no matemáticos". De forma más general, este campo estudia los problemas que surgen con el estudio de los números enteros. Tal como cita Jürgen Neukirch: La teoría de números ocupa entre las disciplinas matemáticas una posición idealizada análoga a aquella que ocupan las matemáticas mismas entre las otras ciencias.2 El término "aritmética" también era utilizado para referirse a la teoría de números. . Este sentido del término aritmética no debe ser confundido con la aritmética elemental, o con la rama de la lógica que estudia la aritmética de Peano como un sistema formal. Los matemáticos que estudian la teoría de números son llamados teóricos de números.