Reports E/CTRM Software – To Build or Buy? | Page 25

CTRM for Ags & Softs        unit in size. Strength measurements are made on the same beards of cotton that are used for measuring fiber length. The beard is clamped in two sets of jaws, 1/8 inch apart, and the amount of force required to break the fibers is determined. Fiber strength is largely determined by variety. However, it may be affected by plant nutrient deficiencies and weather. Fiber strength and yarn strength are highly correlated. Also, cotton with high fiber strength is more likely to withstand breakage during the manufacturing proces s. Micronaire is a measure of fiber fineness and maturity. An airflow instrument is used to measure the air permeability of a constant mass of cotton fibers compressed to a fixed volume. Micronaire can be influenced during the growing period by environmental conditions such as moisture, temperature, sunlight, plant nutrients, and extremes in plant or boll population. Fiber fineness affects processing performance and the quality of the end product in several ways. In the opening, cleaning, and carding processes, low-micronaire or fine-fiber cottons require slower processing speeds to prevent damage. Fiber length and strength measurements are made on the same “beard” of cotton. Yarns made from finer fiber have more fibers per cross-section, which results in stronger yarns. Dye absorbency and retention are affected by the maturity of the fibers; the greater the maturity, the better the absorbency and retention. Color grade is determined by the degree of reflectance (Rd) and yellowness (+b) as established by official standards and measured by the high volume instrument. Reflectance indicates how bright or dull a sample is, and yellowness indicates the degree of pigmentation. A three-digit color code is determined by locating the point at which the Rd and +b values intersect on the color chart for American Upland cotton. The high volume instrument grades the color of cotton. The color of cotton fibers can be affected by rainfall, freezes, insects, fungi, and staining through contact with soil, grass, or cotton-plant leaf. Excessive moisture and temperature levels can also affect color during storage, both before and after ginning. Color deterioration because of environmental conditions affects the fibers’ ability to absorb and hold dyes and finishes and is likely to reduce processing efficiency. Trash is a measure of the amount of non-lint materials in cotton, such as leaf and bark from the cotton plant. A digital camera scans the surface of the cotton sample, and the digital image is analyzed. The percentage of the surface area occupied by trash particles (percent area) and the number of trash particles visible (particle count) are calculated and reported. The ratio between percent area of trash and trash particle count is a good indicator of the average particle size in a cotton sample. For instance, a low percent area combined with a high particle count indicates a smaller average particle size than does a high percent area with a low particle count. A high percent area of trash results in greater textile mill processing waste and lower yarn quality. Small trash particles, or “pepper trash,” are highly undesirable, because they are more difficult for the mill to remove from the cotton lint than are larger trash particles. Leaf grade is a measure of the leaf content in cotton. Recent extensive research and development work has resulted in acceptance of instrument leaf grade. Leaf grade is now determined by high volume instrument trash meter percent area and particle count (described above for trash). The leaf grade is calculated from these parameters based on the Universal Upland Grade Standards and American Pima Grade Standards. Plant variety, harvesting methods, and harvesting conditions affect leaf content. The amount of leaf remaining in the lint after ginning depends on the amount present in the cotton before ginning, the amount of cleaning, and the type of cleaning and drying equipment used. Even with the most careful harvesting and ginning methods, a small amount of leaf remains in the cotton lint. From the manufacturing standpoint, leaf content is all waste, and there is a cost factor associated with its removal. Also, small particles cannot always be successfully removed, and these particles may detract from the quality of the finished product. Extraneous matter is any substance in the cotton other than fiber or leaf. Examples of extraneous matter are bark, grass, spindle twist, seedcoat fragments, dust, and oil. The classer will note, using a remark, other factors such as the kind of extraneous matter and an indication of the amount (light or heavy). Another factor noted on the classification record under “extraneous matter” is abnormal preparation. “Preparation,” or “prep,” describes the degree of smoothness or roughness of the ginned cotton lint. Various methods of harvesting, handling, and ginning cotton produce differences in roughness or smoothness of preparation that sometimes are quite apparent. Abnormal preparation of Upland cotton has greatly decreased in recent years as a result of improved harvesting and ginning practices, and now occurs in less than half of one percent of the crop. Module averaging is a voluntary program offered since 1991 to Cotton Program customers at no additional charge. It is a method to improve the reproducibility of the high volume instrument measurements of cotton strength, length, length uniformity, and micronaire. Improved reproducibility and accuracy enhance the value of U.S. cotton classification and allow all parties to trade U.S. cotton with greater confidence in the quality © Commodity Technology Advisory LLC, 2016, All Right Reserved 24