Radioprotection 2024 , 59 ( 2 ), 80 – 87 © SFRP , 2024 https :// doi . org / 10.1051 / radiopro / 2023039
Available online at : www . radioprotection . org
ARTICLE
Use of a drone-based gamma-ray spectrometry system to assess point or extended radioactive sources
J . A . Corbacho 1 ,* , J . A . Baeza 2 and J . M . Caballero 2
1 Departamento de Física Aplicada , Centro Universitario de Mérida , Universidad de Extremadura , 06800 Mérida , Spain .. 2 LARUEX , Laboratorio Radiactividad Ambiental , Universidad de Extremadura , 10003 , Cáceres , Spain ..
Received : 11 July 2023 / Accepted : 27 October 2023
Abstract – In recent times , the utilization of unmanned aerial vehicles ( UAVs ) has emerged as a novel tool for a wide range of tasks associated with radiological protection in hazardous situations . This article presents the development of a rotary-wing drone-based system equipped with a LaBr 3 ( Ce ) detector , enabling highly accurate quantification of both point and extended radiation sources . The drone ’ s capability to precisely measure H *( 10 ) and the activity levels of the involved radionuclides has been assessed through real-world testing in two scenarios . The results demonstrate uncertainties of less than 20 %. Keywords : Environmental assessment / dose equivalent / scintillation detector / spectrometry gamma / TENORM
Résumé – Utilisation d ’ un système de spectrométrie gamma par drone pour évaluer les sources radioactives ponctuelles ou étendues . Récemment , l ’ utilisation de véhicules aériens sans pilote ( UAV ) est apparue comme un nouvel outil pour un large éventail de tâches associées à la protection radiologique dans des situations dangereuses . Cet article présente le développement d ’ un système basé sur un drone à voilure tournante équipé d ’ un détecteur LaBr3 ( Ce ), permettant une quantification très précise des sources de rayonnement ponctuelles et étendues . La capacité du drone à mesurer précisément H *( 10 ) et les niveaux d ’ activité des radionucléides concernés a été évaluée par des essais en conditions réelles dans deux scénarios . Les résultats démontrent des incertitudes inférieures à 20 %.
Mots clés : évaluation environnementale / équivalent de dose / détecteur à scintillation / spectrométrie gamma / TENORM
1 Introduction
When working with radioactive materials , there are many planned or emergency situations in which radioactive sources , whose activities may cause high radiation doses in their surroundings , must be located , identified and characterised . These operations must be carried out with minimum exposure to the technical personnel responsible for carrying them out . Recent technological developments have made it possible to locate the radioactive source to be evaluated from a distance , so that these operations can be carried out without exposing the personnel involved to any risk of radiation . The use of remotely operated vehicles equipped with ionising radiation monitors allows many of the tasks associated with radiological protection in general and the management of radiological emergencies in particular to be carried out while ensuring the safety of the operators .
* Corresponding author : corbamer @ unex . es
Particularly noteworthy in this context is the relatively recent use of unmanned aerial vehicles ( UAVs ) ( Pöllänen et al ., 2009 ; Towler et al ., 2012 ; Sanada et al ., 2015 ; Vale et al ., 2017 ; Bednář et al ., 2021 ). The works of Chen et al . ( 2020 ) and Lee et al . ( 2019 ) stand out for their in-depth analysis of the state of the art in the use of UAVs and the types of detectors depending on the mission objectives for which these systems are used .
After the Fukushima accident , the usefulness of UAVs for the characterisation of areas potentially affected by the disaster was demonstrated , particularly in areas where the deposited artificial radionuclide activity significantly exceeded the environmental background ( Falciglia et al ., 2018 ). However , in areas where the activity levels of the radionuclides to be studied were of the order of the environmental background , the use of UAVs and low-efficiency scintillators ( CZT , CsI ( Tl ), etc ...) was more limited ( Falciglia et al ., 2018 ; Pinto et al ., 2021 ; Katreiner et al ., 2022 ). In this regard , there have been fewer works focused on mapping areas with subtle radiological anomalies . For example , the work of Šálek et al ., ( 2018 )