Quarry Southern Africa September 2017 | Page 27

BENEFICIATION C oncrete is one of the most used materials in the world, second only to water. At the same time, the cement used in concrete is one of the largest producers of carbon dioxide, contributing an estimated five to eight per cent of all human-generated atmospheric carbon each year. Last year alone, 4.2 billion tonnes of cement were produced (Statista 2017). With the increasing focus on environmental sustainability and climate change, these two aspects need to somehow be reconciled. One of the areas that is helping with this is the use of alkali- activated and geopolymer concrete. The ultimate goal of research into these areas is to obtain optimal strength from ‘green’ concrete by producing a hybrid material of superior strength with a significantly lower carbon footprint, reduced water consumption, and a lower cost. One of South Africa’s biggest proponents of low- and no-cement concrete is professional chemist Cyril Attwell from ARC Innovations. Until earlier this year, Attwell was the group concrete and research manager at Murray & Roberts, where he worked on Transnet’s City Deep Container Terminal upgrade, as well as the Loeriesfontein and Khobab wind farms and Cape Town’s Portside Tower skyscraper. “People tend to think that concrete is simple, but this isn’t the case. Concrete is the most complex crystalline structure known to man,” Attwell explains. “There are over 500 families of crystals in normal concrete, and when you start looking at geopolymer and alkali-activated concrete, for example, this number increases to over 800. It’s extremely complex. I got into concrete research more by accident than by design, but once I got into it and started looking at the complexity of it, it captivated me. Everyone sees concrete as being a simple, highly ordered product, when in reality it is highly complex with a huge chaotic streak, and I like trying to order chaos.” A self-described ‘bunny hugger’, Attwell has been looking at ways to reduce the carbon footprint of concrete since he first started working with it over 20 years ago. But creating green cement is easier said than done. “For every cubic metre of concrete used, the cement required releases about 0.9kg of carbon dioxide, with an average of 300–350kg of cement. Now with alkali-activated, low-cement concrete, every cubic metre used comprises 20–30% — or 200–300ℓ — of a commercial activator, usually a combination of a hydroxide with a silicate. “The problem with this is that for every kilogram of silicate used, you produce around 0.66–0.75kg of carbon dioxide (CO 2 ), because sodium carbonate is used to get to the sodium silicate, driving off CO 2 . So while this amount is lower than that produced by cement, it is not substantially so,” he explains. “Then there is the fact that with most alkali activation, the 200–300ℓ of activator are unreactive at ambient temperatures, so you need to heat them up, increasing the CO 2 . And this is one of the problems I have with this whole green mentality when it comes to the silicates, especially when you've got 200–300ℓ of commercialised material. And with most alkali activation, the commercial activator is unreactive at ambient temperatures, so they need to be heated up, which uses more energy and creates more CO 2 .” South African projects Attwell explains that he was involved in the Gautrain project. “Murray & Roberts brought me in to design the concrete and do the production on the Gautrain. On that project, we were actually able to reduce the amount of cement used from the original estimates by 144 000 tonnes, from the original 354 000 tonnes estimate to 210 000, and we replaced that 144 000 tonnes with 140 000 tonnes of ash from the Lethabo Power Station. Generally, people don’t use fly ash for precast, especially not for such a big project, but by applying advanced re-crystallisation (ARC) technology, we were able to utilise a 32% substitution for the precast, and we didn’t use any steam at all.” ARC is the process of optimising the On the Gautrain project, Murray & Roberts was able crystallography of a to replace 144 000 tonnes of cement with 140 000 hydration, polymer, or tonnes of fly ash from the Lethabo Power Station. QUARRY SA | SEPTEMBER 2017 _ 25