PROFIS Design Guide - AC 318-19 July 2022 | Page 328

2.0 SHEAR

2.5 Steel Failure with Lever Arm
Calculations
1 ‒
N ua
ϕN sa
Calculations ETAG 001 Annex C Provision Comments for PROFIS Engineering
1 ‒ N ua
ϕN sa
5.2.3.2 Steel failure b ) Shear load with lever arm
ETAG 001 reduction for tensile force acting on the anchor ( 1 ‒ N Sd
/ N Rd , s
) resultant flexural resistance of anchor
M Rk , s
= M 0 ( 1 N / N ) [ Nm ] ( 5 . 5a )
Rk , s Sd Rd , s
The characteristic resistance of an anchor , V Rk , s , is given by Equation ( 5.5 ).
V Rk , s
= α M M Rk , s [ N ] ( 5.5 ) l where α M
= see 4.2.2.4 l = lever arm according to Equation ( 4.2 )
M Rk , s
= M 0 ( 1 - N / N ) [ Nm ] ( 5 . 5a )
Rk , s Sd Rd , s
N Rd , s
= N Rk , s / Y Ms
N Rk , s
, Y Ms to be taken from the relevant ETA M 0 = characteristic bending resistance of an individual anchor
Rk , s
The value of M 0 for anchors according to current experience is obtained from Equation ( 5 . 5b ).
Rk , s
M 0 Rk , s = 1 . 2 W el ƒ uk
[ Nm ] ( 5 . 5b )
The figures below illustrate ETAG 001 design assumptions with respect to bolt bending . PROFIS Engineering nomenclature for ACI 318 calculations is used in the illustrations .
Shear and tension load act on an anchorage with standoff .
PROFIS Engineering uses the provisions given in the European Technical Approval Guideline ( ETAG ) titled ETAG 001 Metal Anchors for Use in Concrete Annex C : Design Methods for Anchorages to consider bolt bending as a possible shear failure mode .
The ETAG 001 parameter M 0 corresponds to a calculated internal
Rk , s
“ characteristic bending resistance ” for the anchor element . If both tension and shear loads act on the anchor , ETAG 001 provisions require a reduction factor ( 1 – N sd
/ N Rd , s
) to be applied to M 0 , and the resulting parameter is designated
Rk , s
“ M Rk , s ” per Equation ( 5.5a ). The parameters “ N sd
” and “ N Rd , s
” in Equation ( 5.5a ) correspond to the “ design steel tension force ” and the “ design resistance steel force ”, respectively .
PROFIS Engineering designates the parameters in Equation ( 5.5a ) as follows : “ M Rk , s
” is designated “ M s
” “ M 0 Rk , s is designated M0 s “ N sd
” is designated “ N ua
“ N Rd , s ” is designated “ фN sa
PROFIS Engineering defines the parameters for the Equation ( 5.5a ) tension modification factor as follows :
N ua
= highest factored tension load acting on an individual anchor
фN sa
= design steel strength in tension for a single anchor .
Reference the Variables section in Part 4.2 of the PROFIS Engineering report for more information on the parameters N ua and фN sa when used in ETAG 001
Equation ( 5.5a ). The values for N ua and фN sa are taken from Part 3.1 ( steel strength in tension calculations ) of the PROFIS Engineering report .
PROFIS Engineering calculations
фV M = α M )/ L ) s M s b
modified ETAG 001 Equation ( 5 . 5 )
M s
= M 0 ( 1 - N / фN ) s ua sa
modified ETAG 001 Equation ( 5 . 5a )
M 0 = ( 1 . 2 )( S )( ƒ ) s u , min
modified ETAG 001 Equation ( 5 . 5b )
328
NORTH AMERICAN PROFIS ENGINEERING ANCHORING TO CONCRETE DESIGN GUIDE — ACI 318-19 Provisions