PROFIS Design Guide - AC 318-19 July 2022 | Page 308

2.0 SHEAR

2.5 Steel Failure with Lever Arm
Equations M s
= M 0 s
Equations ETAG 001 Annex C Provision Comments for PROFIS Engineering
M s
= M 0 s 1 –
N au
ϕN sa
ETAG 001 resultant flexural resistance of anchor
5.2.3.2 Steel failure b ) Shear load with lever arm
M Rk , s
= M 0 ( 1 N / N ) [ Nm ] ( 5 . 5a )
Rk , s Sd Rd , s
The characteristic resistance of an anchor , VRk , s , is given by Equation ( 5.5 ).
V Rk , s
= α M M Rk , s [ N ] ( 5.5 ) l
where α M
= see 4.2.2.4 l = lever arm according to Equation ( 4.2 )
M Rk , s
= M 0 ( 1 - N / N ) [ Nm ] ( 5 . 5a )
Rk , s Sd Rd , s
N Rd , s
= N Rk , s / Y Ms
N Rk , s
, Y Ms to be taken from the relevant ETA M 0 = 1 . 2 W ƒ ( 5.5b )
Rk , s el uk [ Nm ]
The figures below illustrate ETAG 001 design assumptions with respect to bolt bending . PROFIS Engineering nomenclature for ACI 318 calculations is used in the illustrations .
Shear and tension load act on an anchorage with standoff .
PROFIS Engineering uses the provisions given in the European Technical Approval Guideline ( ETAG ) titled ETAG 001 Metal Anchors for Use in Concrete Annex C : Design Methods for Anchorages to consider bolt bending as a possible shear failure mode .
The ETAG 001 parameter M 0 corresponds to a calculated internal
Rk , s
“ characteristic bending resistance ” for the anchor element . This parameter is designated M 0 in PROFIS Engineering . The ETAG 001 parameter M s Rk , s corresponds to a calculated internal “ characteristic bending resistance ” that is modified to account for both tension and shear load acting on the anchor element . If only a shear load acts on the anchor , M Rk , s
= M 0 . If both tension and shear
Rk , s load act on the anchor , ETAG 001 provisions require a reduction factor ( 1 – N sd
/ N Rd , s
) to be applied to M 0 to obtain M . Therefore , if tension and
Rk , s Rk , s shear act on the anchor , M Rk , s
= M 0 ( 1 N / N ) per ETAG 001 Equation ( 5 . 5a ).
Rk , s sd Rd , s
PROFIS Engineering designates the parameter corresponding to M Rk , s as “ M s
”.
The parameters “ N sd ” and “ N Rd , s
” in the ETAG 001 reduction factor ( 1 – N sd / N Rd , s
) correspond to the “ design steel tension force ” and the “ design resistance steel force ”, respectively . This reduction factor is designated ( 1 – N ua
/ ϕN sa ) in PROFIS
Engineering , where “ N ua
” corresponds to the highest factored tension load acting on an individual anchor and “ ϕN sa
” corresponds to the calculated steel design strength in tension for a single anchor . When both tension load and shear load act on an anchor with standoff , PROFIS Engineering calculates the internal bending resistance for the anchor as follows :
M s
= M 0 s ( 1 N ua / ϕN sa ).
The ETAG 001 parameter M 0 is defined by Equation ( 5 . 5b ) as shown to the left .
Rk , s
The parameter W el corresponds to the “ elastic section modulus ” of the anchor element , and the parameter ƒ uk corresponds to the “ characteristic ultimate tensile strength ” of the anchor element .
PROFIS Engineering calculation .
When performing bolt bending calculations , PROFIS Engineering designates the elastic section modulus for the anchor element “ S ” and the ultimate tensile strength for the anchor element “ ƒ u , min
”, where “ ƒ u , min
” corresponds to the “ minimum specified ultimate tensile strength ” of the anchor element . The PROFIS Engineering report defines the parameter “ M 0 ” using the following equation : s
M 0 = ( 1 . 2 ) ( S ) ( ƒ ). s u , min
ϕV s
M
= ϕ α M
M s
L b
Reference the Equations section of the report for more information on the following PROFIS Engineering parameters .
M 0 : characteristic flexural resistance of the anchor s
( 1 – N ua / ϕN sa
): reduction factor for tension load
Reference the Variables section of the report for more information on the following PROFIS Engineering parameters :
N ua
: factored tension load
ϕN sa
: design steel strength in tension
Reference the Calculations section of the report for more information on the following PROFIS Engineering parameters .
M 0 : characteristic flexural resistance of the anchor s
( 1 – N ua
/ ϕN sa ): reduction factor for tension load
M s
: resultant flexural resistance of the anchor
308 NORTH AMERICAN PROFIS ENGINEERING ANCHORING TO CONCRETE DESIGN GUIDE — ACI 318-19 Provisions