Product Technical Guides : US-EN Cast-In Anchor Channel Fastening Technical Guide | Page 404

1. Anchor Channel Systems Code 2. HAC Portfolio 3. HAC Applications 4. Design Introduction Discussion 5. Base material 6. Loading Calculations 9. Special Anchor Channel Design 10. Design Software 11. Best Practices 12. Instructions for Use Discussion 14. Design Example 13. Field Fixes Calculations Step 7: Concrete strength Concrete pryout strength - perpendicular shear (Anchor a3) The ICC-ES Acceptance Criteria AC232 includes amendments to the ACI 318 anchoring to concrete provisions. These amendments are given in Section 3.1 Strength Design – Amendments to ACI 318. Part D.6.3.2 (ACI 318-11) and Section 17.5.3.2 (ACI 318-14) of these amendments requires the factor ψ s,N to be modified when calculating concrete pryout strength in shear. All of the parameters used to calculate ψ s,N in tension are used except the parameter (N aua,i / N aua,3 ). The shear loads acting on the anchor elements are substituted for the tension loads such that (V aua,i / V aua,3 ) is used instead of (N aua,i / N aua,3 ). These provisions for calculating concrete pryout strength are also given in ESR-3520 Section 4.1.3.3.4. V cp,y,3 = k cp N cb,3 ESR-3520 Equation (41) K cp3 = 2.0 ESR-3520 Table 8-6 N cb3 = N b3 · ψ s,N3 · ψ ed,N3 · ψ co,N3 · ψ c,N3 · ψ cp,N3 ESR-3520 Equation (6) s i s xx,1 s 1, 3 s 2,3 s cr,N 8. Reinforcing Bar Anchorage Code Step 7: Concrete strength ESR-3520 Section 4.1.3.3.4. ACI 318-14 Chapter 17 7. Anchor Channel Design Code = spacing between each anchor element = 5.91 in = distance of each influencing anchor element from anchor element #3 = distance from anchor element #1 to anchor element #3 = 11.812 in = distance from anchor element #2 to anchor element #3 = 5.906 in = critical anchor spacing for tension loading (h ef =4.173 in) 1 . 3 h ef æ s cr , N = 2 ç ç 2 . 8 - 7 . 1 è ö ÷ ÷ h ef ³ 3 h ef ø ESR-3520 Equation (10) The parameter ψ s,N is a modification factor that is used to account for the influence of adjacent anchor elements on the anchor element being considered. V a ua,1 = tension load on anchor element #1=421 lb V a ua,2 = tension load on anchor element #2 1461 lb V a ua,3 = tension load on anchor element #3=1618 lb The calculated value for V cp,y,3 will be multiplied by a strength reduction factor (φ-factor) to give a design strength (φV cp,y,3 ). The calculated φV cp,y,3 value for anchor element #3 will be checked against the factored load acting on anchor element #3 (V ua3 ) to obtain the % utilization (V ua3 / φV cp,y,3 ). The anchor element with the highest % utilization will control the design with respect to concrete pryout failure in shear. ESR-3520 section 4.1.3.3.3 ACI 318-14 Chapter 17 Concrete breakout strength in perpendicular shear for anchor element #3 ФV cb ≥ V aua V cb,3 = V b,3 · ψ s,V,3 · ψ co1,V,3 · ψ co2,V,3 · ψ h,V,3 · ψ c,V,3 V b = ψ s,V = ψ co,V = ψ c,V = ψ h,V = Pryout: ФN cp,yb s cr,N = 16.98 in refer to concrete breakout tension influence of anchor element #1 on anchor element #3: 1.5 æ 11.812 in ö 421 lbs ç 1 - ÷ è 16.980 in ø 1618 lbs = 0.0437 influence of anchor element #2 on anchor element #3: 1.5 5.906 in ö 1461 lbs æ ç 1 - ÷ è 16.980 in ø 1618 lbs = 0.4756 y s , N , 3 = 1 = 0.658 1 + (0.0437 + 0.4756) ESR-3520 Equation (30) Basic concrete breakout strength in shear Modification factor for anchor spacing Modification factor for corner effects Modification factor cracked/uncracked concrete Modification factor for concrete thickness Concrete edge breakout: ФV cb,y V b = ( 1 . 0 ) (10.50) 6,000psi × ( 5.0in ) 3 4 Calculate the basic concrete breakout strength in shear (V b,3 ). V b = l × α ch, V × f c ' × ( c a1 ) 3 \ V b = 6 , 954 lbs 4 ESR-3520 Equation (31) λ… Modification for lightweight concrete Lightweight concrete = 0.75 Sand-Lightweight concrete = 0.85 α ch,V … Influence factor for channel size (10.50, max.) f´ c … Concrete compressive strength (psi) (8,500 psi, max) c a1 … Perpendicular edge distance (in.) (edge to center line of channel) c cr , N = 0.5 s cr , N = ( 0.50 ) 16.98 in c cr , N = 8.49 in æ 5.0in ö ÷ è 8.49in ø = 0 . 767 y ed, N = ç \ y ed, N 0.5 < 1.0 c a2( + x) = 6.00 in + 0.984 in c a2( + x) = 6.984 in æ c ö c a 2 ( - x ) = ¥ ® ç ç a2( - x) ÷ ÷ è c cr, N ø c cr , N = 8 . 49 in æ 6.984in ö ÷ è 8.49in ø \ y co, N,3 = 0 . 907 y co, N,3 = ç 0.5 = 1 0.5 < 1.0 ψ s,N = 0.658 ψ ed,N = 0.767 ψ co,N = 0.907 ψ cp,N = 1.0 ψ c,N = 1.0 N b 3 = 14634 lbs N cb , 3 = 6699 lbs k cp = 2 Figure 14.1.21 — Design example – reduction factors of V cb V cp , y , 3 = k cp xN cb , 3 V cp , y , 3 = 2 x 6699 lbs = 13397 lbs Condition B j = 0.7 j V cp,y,3 = 9378lbs V a ua,3 = 1618 lbs æ 1618 ö ÷ x 100% = 1 8% è 9378 ø b cp , v , 3 = ç 404 Cast-In Anchor Channel Product Guide, Edition 1 • 02/2019 405