Product Technical Guides : US-EN Cast-In Anchor Channel Fastening Technical Guide | Page 400

1. Anchor Channel Systems Code 2. HAC Portfolio 3. HAC Applications 4. Design Introduction Discussion 5. Base material 6. Loading 7. Anchor Channel Design Code 8. Reinforcing Bar Anchorage 9. Special Anchor Channel Design Calculations y s,N3 = Concrete breakout strength in Tension continued. This influence takes into consideration the loading on each anchor element as well as the distance (spacing) of these elements from anchor element #2. Reference ESR- 3520 Equations (10) and (11) for more information on how to calculate ψ s,N . The parameter s cr,N corresponds to the maximum distance that is assumed with respect to the influence of an anchor element on the anchor element being considered. Any anchor elements that are within s cr,N from the anchor element being considered are assumed to have an influence on that anchor element. The calculated value for s cr,N will be the same for each anchor element; however, the number of anchor elements within the distance s cr,N from the anchor element being considered may not always be the same. Reference ESR-3520 Equation (11) for more information on how to calculate s cr,N . s i = spacing between each anchor element = 5.91 in s xx,1 = distance of each influencing anchor element from anchor element #3 s 1,3 = distance from anchor element #1 to anchor element #3 = 11.812 in s 2,3 = distance from anchor element #2 to anchor element #3 = 5.906 in s cr,N = critical anchor spacing for tension loading (h ef =4.173 in) 1 . 3 h ef ö æ ÷ h ef ³ 3 h ef s cr , N = 2 ç ç 2 . 8 - 7 . 1 ÷ ø è ESR-3520 Equation (11) The parameter ψs,N is a modification factor that is used to account for the influence of adjacent anchor elements on the anchor element being considered. N a ua,1 = tension load on anchor element #1 = 204 lb N a ua,2 = tension load on anchor element #2 = 710 lb N a ua,3 = tension load on anchor element #3 = 786 lb 11. Best Practices 12. Instructions for Use 13. Field Fixes 14. Design Example 1 é æ 5.906in ö 710lbs ù é æ 11.812in ö 1.5 204lbs ù 1 + å ê ç 1 - ú + ê ç 1 - ú ÷ × ÷ × ê ë è 16.980in ø 786lbs ú û ê ë è 16.980in ø 786lbs ú û \ y s,N3 = 0.658 Step 7: Concrete strength ESR-3520 section 4.1.3.2.3 ACI 318-14 Chapter 17 10. Design Software Code Discussion Concrete breakout: ФN cb Step 7: Concrete strength 1 . 3 ( 4 . 173 in ) ö æ s cr , N = 2 ç 2 . 8 - ÷ 4 . 173 in 7 . 1 è ø = 16 . 980 in 3 h ef = 3 ( 4 . 173 in ) = 12 . 519 in ESR-3520 section 4.1.3.2.3 ACI 318-14 Chapter 17 s cr , N = 16 . 980 in ³ 12 . 519 in influence of anchor element #1 on anchor element #3: 1.5 æ 11.812 in ö 204 lbs ç 1 - ÷ è 16.980 in ø 786 lbs = 0.0436 influence of anchor element #2 on anchor element #3: 1.5 5.906 in ö 710 lbs æ ç 1 - ÷ è 16.980 in ø 786 lbs = 0.4758 1 1 + (0.0436 + 0.4758) y s , N , 3 = y s , N , 3 = 0.658 1.5 Calculations Concrete breakout strength in Tension continued… Calculate the modification factor for edge influence (ψ ed,N,3 ). The parameters c a1 and c a2 correspond to the distance from the center of the anchor element being considered to a fixed edge. c a1 is measured perpendicular to the anchor channel longitudinal axis, and is considered when calculating the modification factor for edge influence (ψ ed,N ). c a1 … c cr,N … Concrete breakout: ФN cb edge distance of the anchor channel critical edge distance for tension loading s cr , N = 16 . 98 in c cr , N = 0 . 5 s cr , N = ( 0 . 50 ) 16 . 98 in 0.5 æ c ö y ed, N = ç ç a1 ÷ ÷ £ 1.0 è c cr, N ø ESR-3520 Equation (13) c cr , N = 0 . 5 s cr , N ³ 1 . 5 h ef s cr , N 1 . 3 h ef æ = 2 ç ç 2 . 8 - 7 . 1 è c cr , N = 8 . 49 in æ 5.0in ö ÷ è 8.49in ø = 0 . 767 y ed, N = ç ESR-3520 Equation (14) \ y ed, N 0.5 < 1.0 ö ÷ ÷ h ef ³ 3 h ef ø Figure 14.1.19 — Design example – spacing reduction factor - S cr,N Figure 14.1.20-a — Design example – C cr,N 400 Figure 14.1.20-b — Design example – C cr,N Cast-In Anchor Channel Product Guide, Edition 1 • 02/2019 401