Product Technical Guides : US-EN Cast-In Anchor Channel Fastening Technical Guide | Page 190

1. Anchor Channel Systems 2. HAC Portfolio 3. HAC Applications 6. Loading The nominal pryout strength, V cp,x , in shear of a single anchor of an anchor channel without anchor reinforcement shall be computed in accordance with ESR 3520 Eq. (41). N cb = N b × ψ s, N × ψ ed, N × ψ co, N × ψ c, N × ψ cp, N 7.5 INTERACTION EQUATIONS: b) At the point of load application: a b b æ N ua ö æ V ua , y + ç ÷ ç ç è f N sl ø è f V sl , y æ M u , flex ç ç è f M s , flex 2 ö ÷ ÷ £ 1.0 ESR-3520 Equation (46) ø α = 2 for anchor channels with V sl,y ≤ N s,l α = 1 for anchor channels with V sl,y > N s,l If forces act in more than one direction, the combination of loads has to be verified. Anchor channels subjected to combined tension and shear loads shall be designed to satisfy the following requirements by distinguishing between steel failure of the channel bolt, steel failure modes of the channel and concrete failure modes. Interaction equations for each anchor channel element are required. Moreover, concrete and steel utilizations need not to be combined. The verification of up to 5 interaction equations are required. Steel Failure of Channel Bolts Under Combined Loads 2 2 æ N b ua ö æ V b ua ö ç ç ÷ ÷ + ç ç ÷ ÷ £ 1 . 0 è f N ss ø è f V ss ø V b ua [ ( = V b ua, y ) + ( V 2 b ua, x ESR-3520 Equation (43) ) ] This verification is not required in case of shear load with lever arm as Eq. (28) accounts for the interaction. Steel Failure Modes of Anchor Channels Under Combined Loads: Interaction equations based on Acceptance Criteria 232, February 2019. ICC ESR-3520 to be updated. Concrete failure modes of anchor channels under combined loads: Concrete Failure Modes of Anchor Channels Under Combined Loads: For concrete failure modes, anchor channels shall be designed to satisfy the requirements given in a) through d). D.7.4.3, Section D.7.4.3 (ACI 318-14) : Section D.7.4.3.1, Section 17.6.4.3.1 (ACI 318-14) through D.7.4.3.3, Section 17.6.4.3.3 (ACI 318-14). Requirements for lightweight concrete: æ V ua a , y V ua a , y æ N a N a ö max ç ua , ua ÷ + max ç , ç f V sa , y f V sc , y è f N sa f N sc ø è a ö æ V ua a , x V ua a , x , ÷ ÷ + max ç ç è f V sa , x f V sc , x ø 2 ö ÷ ÷ £ 1.0 ø ESR-3520 Equation (44) where: α = 2 for anchor channels with max (V sa,y ; V sc,y ) ≤ min (N sa ; N sc ) It shall be permitted to assume reduced values for V sa,y and V sc,y corresponding to the use of an exponent α = 2. In this case the reduced values for V sa,y and V sc,y shall also be used. b) D.7.4.3.2, Section 17.6.4.3.2 (ACI 318−14) − If æ N ua a , y ö ç ç ÷ ÷ £ 0.2 è f N nc ø then the full strength in shear shall be permitted: æ V ua a , y ö æ V ua a , x ö ç ç ÷ ÷ + ç ç ÷ ÷ £ 1.0 è f V nc , y ø è f V nc , x ø c) D.7.4.3.3, Section 17.6.4.3.3 (ACI 318−14)− If æ V ua a , y ö æ V ua a , x ö æ N ua a , y ö ç ç ÷ ÷ + ç ç ÷ ÷ > 0.2 ÷ ÷ > 0.2 and ç ç è f N nc ø è f V nc , y ø è f V nc , x ø then Eq. (D−32e), Eq. ( 17.6.4.3.a ACI318−14) applies: a a æ N ua ö æ V ua , y ö æ V ua a , x ö + £ 1.2 ÷ ÷ ç ÷ + ç ç ÷ ç ÷ ç è f N nc ø è f V nc , y ø è f V nc , x ø d) D.7.4.3.4, Section 17.6.4.3.4 (ACI 318−14) − Alternatively, instead of satisfying “a” through “c” , the interaction equation may be satisfied: 5 a a æ N ua ö 3 æ V ua , y ç ÷ + ç ç f V nc , y è f N nc ø è 5 ö 3 æ V ua a , x + ç ÷ ç f V ÷ nc , x è ø 5 ö 3 £ 1.0 ÷ ÷ ø Cast-In Anchor Channel Product Guide, Edition 1 • 02/2019 191 α = 1 for anchor channels with max (V sa,y ; V sc,y ) > min (N sa ; N sc ) then the full strength in tension shall be permitted: æ N ua a , y ö ç ç ÷ ÷ £ 1.0 è f N nc ø a) Anchor and connection between anchor and channel: a It shall be permitted to assume reduced values for V sl,y corresponding to the use of an exponent α = 2. In this case the reduced value for V sl,y shall also be used. a) D.7.4.3.1, Section 17.6.4.3.1 (ACI 318−14) − If æ V ua a , y ö æ V ua a , x ö ç ç ÷ ÷ + ç ç ÷ ÷ £ 0.2 è f V nc , y ø è f V nc , x ø 2 0 . 5 In all other cases: 190 a ö æ V ua b , x ÷ ÷ + ç ç ø è f V sl , x ESR-3520 Equation (45) where:  dge distance required to develop full concrete capacity in c ac : E absence of anchor reinforcement. For the use of anchor channels in lightweight concrete, the modification factor λ shall be taken as 0.75 for all-lightweight concrete and 0.85 for sand-lightweight concrete. Linear interpolation shall be permitted if partial sand replacement is used. ö æ V ua b , y ÷ ÷ + ç ç ø è f V sl , y 2 ö ÷ ÷ £ 1.0 ø The minimum edge distance, minimum and maximum anchor spacing and minimum member thickness shall be taken from Table 8-1 ESR-3520. The critical edge distance, c ac , shall be taken from Table 8-4 ESR-3520. a a ö æ V ua b , x ÷ ÷ + ç ç ø è f V sl , x Anchor channels shall satisfy the requirements for edge distance, spacing, and member thickness. 14. Design Example Minimum Member Thickness, Anchor Spacing, and Edge Distance: 13. Field Fixes The ICC-ES Acceptance Criteria AC232 includes amendments to the ACI 318 anchoring to concrete provisions. These amendments are given in Section 3.1 Strength Design — Amendments to ACI 318. Part D.6.3.2 (ACI 318-11) and Section 17.5.3.2 (ACI 318-14) of these amendments requires the factor ψ s,N to be modified when calculating concrete pryout strength in shear. All of the parameters used to calculate ψ s,N in tension are used except the parameter (N aua,i / N aua,1 ). The shear loads acting on the anchor elements are substituted for the tension loads such that (V aua,i / V aua,1 ) is used instead of (N aua,i / N aua,1 ). 12. Instructions for Use ESR-3520 Equation (41) 11. Best Practices k cp = 2 . 0 10. Design Software ESR-3520 Equation (42) V cp, x = k cp N cb , lb ( N ) 9. Special Anchor Channel Design V cp = V cp, x = 0 . 75 . k cp N cb , lb ( N ) Also with increasing load and stud elongation, the baseplate rotates and loses contact with the concrete on the loaded side. These two mechanisms act to further increase the eccentricity between the applied shear load V and the stress resultant Vb in the concrete. The moment resulting from this eccentricity generates a compressive force C between baseplate and concrete and a tensile force N in the stud. If the tensile force in the stud exceeds the tensile capacity associated with the maximum fracture surface that can be activated by the stud, a fracture surface originating at the head of the stud and projecting in conical fashion behind the stud forms. This is defined as a pry-out failure. 8. Reinforcing Bar Anchorage where: k cp = shall be taken from Table 8-10 N cb = n  ominal concrete breakout strength of the anchor under consideration, lb (N), determined in accordance with breakout in tension; however in the determination of the modification factor ψ s,N , the values N aua,1 and N aua,i in Eq. (10) shall be replaced by V aua,1 and V aua,i , respectively. The nominal pryout strength, V cp,y , in shear of a single anchor of an anchor channel with anchor reinforcement shall not exceed: Figure 7.4.4.7 — Load-bearing mechanism of headed stud anchorage subjected to shear loading (schematic). 7. Anchor Channel Design Code Failure load associated with pry- out; The load-bearing mechanism of a single headed stud anchorage subjected to a shear load is illustrated schematically in Figure 7.4.47. The applied shear load gives rise to bearing stresses in the concrete. With increasing load, the surface concrete is crushed or spalled, shifting the centroid of resistance V b to a location deeper in the concrete. 5. Base material Concrete Pryout Strength of Anchor Channels in Shear Longitudinal to the Channel Axis фV cp,x 4. Design Introduction