1. Anchor
Channel Systems
Code
2. HAC
Portfolio
3. HAC
Applications
Discussion
4. Design
Introduction
5. Base material
6. Loading
Calculations
7. Anchor Channel
Design Code
8. Reinforcing
Bar Anchorage
9. Special Anchor
Channel Design
10. Design
Software
The total shear force acting on each anchor
element (Vuax,total) will be the sum of the T-bolt
forces (V1,uax + V2,uax) acting on that element.
As a check, the sum of the total shear forces
acting on all of the anchor elements should equal
the sum of the shear forces acting on all of the
T-bolts.
12. Instructions
for Use
13. Field Fixes
14. Design
Example
AC232 strength design provisions require calculation of nominal strengths corresponding to possible failure modes. Each nominal shear strength is multiplied by a
strength reduction factor (Ф-factor) to obtain a design shear strength. The parameter “% utilization” corresponds to the ratio:
Step 3:Determination of Tension forces on to anchor element.
ESR-3520
4.1.2.2
Eq (2)
Eq (1)
11. Best
Practices
factored load (N ua or V ua )
______________________
design strength (φN n or φV n )
V ua1,1 = 420.86 lbs V ua2,1 = 0 lbs
V ua1,2 = 925.99 lbs V ua2,2 = 535.33 lbs
where “factored load” corresponds to the total factored load (N axx,total or N T-bolt ) and (V axx,total or V T-bolt ) acting on an anchor element in tension or shear respectively, and
“design strength” corresponds to the calculated design strength for the failure mode being considered in tension or shear respectively, Utilizations less than 100%
indicate the factored load is less than the design strength, while utilizations greater than 100% indicate the factored load exceeds the design strength. Therefore,
the anchor channel design is considered acceptable if all of the utilizations are less than 100%, and the combined interaction checks using these utilizations are
satisfied. When both tension and shear loads act on the anchor channel system, combined interaction checks must be made for both steel failure and concrete
failure.
V ua1,3 = 403.15 lbs V ua2,3 = 1214.67 lbs
V ua1,total = V ua,1,1 + V ua2,1 = 421 lbs
V ua2,total = V ua,1,2 + V ua2,2 = 1461 lbs
V ua3,total = V ua,1,3 + V ua2,3 = 1618 lbs
Code
Discussion
Calculations
Step 4: Steel strength Anchor and connection between anchor and channel profile.
ESR-3520 section
4.1.3.2.2
Anchor strength Tension (Anchor a3, Channel a) N ua a 3 = 786 lbs
Ф N sa ≥ N f N sa = 8430 lbs
a
ua
Nominal strength corresponding to the anchor element → N sa
b N , sa :
Reference ESR-3520 Table 8-3.
N ua a 3
x100 = 10%
f N sa
N sa for the anchor element of an HAC-50F channel = 11240 lb Ф=0.75
ESR-3520 section
4.1.3.3.2, 4.1.3.4.2
Anchor strength perpendicular shear (Anchor a3 ) V ua a 3 = 1618 lbs
Ф V say ≥ V f V sa , y = 5899 lbs
a
uay
Nominal strength corresponding to the anchor element → V say
b N , sa :
Reference ESR-3520 Table 8-5.
V ua a 3
f V sa , y
x100 = 28%
V say for the anchor element of an HAC-50F channel = 7865 lb Ф=0.75
Figure 14.1.18 — Design example – Anchor Shear forces
ESR-3520 section
4.1.3.2.2
Tension Strength of connection between anchor and channel (Anchor a3) N ua a 3 = 786 lbs
Ф N sc ≥ N f N sc = 5899 lbs
a
ua
Nominal strength corresponding to the anchor element → N sc
b N , sa :
Reference ESR-3520 Table 8-3.
M u,flex = 83.6 in-lb
T-bolt forces
N ua a 3
x100 = 14%
f N sc
N sc for the anchor element of an HAC-50F channel = 7865 lb Ф=0.75
Bolt N bua (lbs) V bua (lbs) V buax (lbs) V buay (lbs)
1 850 1750 0 -1750
2 850 1750 0 -1750
ESR-3520 section
4.1.3.3.2, 4.1.3.4.2
Strength of connection between anchor and channel — perpendicular shear
(Anchor a3)
Ф V scy ≥ V a uay
Nominal strength corresponding to the anchor element → V scy
Reference ESR-3520 Table 8-5.
V scy for the anchor element of an HAC-50F channel = 7865 lb Ф=0.75
V ua a 3 = 1618 lbs
f V sc , y = 5899 lbs
b N , sa :
V ua a 3
x100 = 28%
f V sc , y
T-bolt forces
392
Anchor element N bua (lbs) V bua (lbs) V buax (lbs) V buay (lbs)
a 1 204 421 0 421
a 2 710 1461 0 1461
a 3 786 1618 0 1618
Cast-In Anchor Channel Product Guide, Edition 1 • 02/2019
393