Physics Class 11 Chapter 14 & 15 Oscillations and waves | Page 3

Oscillations and Periodic Harmonic Motion
Simple Harmonic Motion:
Simple Harmonic Motion: Harmonic Motion that is sinusoidal.
A displacement X, that varies sinusoidally may be functionally represented as follows:
X = Xm Cos( wt + q) X = Xm Sin( wt + q)
The amplitude, Xm, and the phase, q, depends on how motion was started( depend on initial conditions). The angular frequency, w, depends on intrinsic properties of the system. For example, when a mass on spring oscillates, the frequency of oscillation and phase of oscillation depend on how the motion was started( how far the mass was pulled, and how hard it was pushed when released).