Phaladeepika - Appendix 2 Phaladeepika - Appendix 2 | Page 4
616
^eZo]nI
2. ]qPyw _ew In´p∂
{Klw
kqcy≥
BsI
252˛01
(˛˛)
180 Tiq\yw_ew72T˛01
ÿm\߃
N{μ≥
432.01
180 T252T˛01
IpP≥
252˛01
180 T72T˛01
_p[≥
343T˛30
180 T163T˛30
hymgw
343T˛30
180 T163T˛30
ip{I≥
432.01
180 T252T˛01
i\n
523.30
180 T343T˛30
3. `mhkv^pShpw {Klkv^pShpw XΩnep≈ hyXymkw.
{Klw
kqcy≥ N{μ≥
IpP≥
_p[≥ hymgw
ip{I≥ i\n
`mhkv^pSw 72T 01 ’ 252T 01’ 72T 01’ 163T 30’ 163T 30’ 252T 01’ 343T 30 ’
50T 49’ 5T 42’ 48 T 145T 26’ 10 T 46’ 77T 51
(˛˛){Klkv^pSw 55T 31
241T 15* 265 T79*
hyXymkw 16T 30 ’ 201T 12* 66T 19’ 115T 30’ 18T 5’
360*
360*
360*
˛˛241T15 ˛˛265T 79*
˛˛201T˛12*
158T .48 66T .19 115T .30 18T .5
118T 45 94T 21
16 T.30
(*180T Un{Knbn¬ A[nIap≈ hyXymkw 360T˛¬\n∂pw Ipdbv°pWw.)
4. ZnIv _ew (hyXymkØns‚ aq∂nsem∂v )
{Klw
kqcy≥ N{μ≥
IpP≥
_p[≥ hymgw
ip{I≥ i\n
T
T
T
T
T
158 .48 66 .19 115 .30 18 .5
118T 45 94T 21
hyXymkw 16 .30
T
T
T
T
T
52 ˛56’ 22 ˛7’
38 ˛30’ 6 ˛1’
39T˛35’ 31 T˛27’
aq∂nsem∂v 5 ˛30’
T
T
T
T
T
52 .93 22 .11 38 .50 6 02
39.T 58
31.T 45
ZimwiØn¬ 5 .50
DZmlcWPmXIØnse {KlßfpsS ZnKv_ew (ZimwiØn¬) :
{Klw
kqcy≥ N{μ≥ IpP≥ _p[≥ hymgw
ZnIv _ew 5.50
52.93
22.11
38.50 6˛02
3.
ip{I≥ i\n
39.58
31.45
ZrIv _ ew
(1) ]q¿ÆZrjvSn : ]q¿ÆZrjvSn_ew ImWp∂ coXn
1. t\m°p∂ {KlØns‚ tcJmwiw t\m°s∏Sp∂ {KlØns‚
tcJmwiØn¬\n∂pw Ipd®v ZrjvSntI{μw ImWpI.
2. Cu ZrjvSntI{μw sh®v Xmsg sImSpØn´p≈ ]´nIbn¬\n∂pwZrjvSnaqeyw ImWpI.
CXmWv B {KlØns‚ ZrjvSn_ew
1. ZrjvSnaqeyw ImWp∂Xn\p≈ tS_nƒ:
t\m°p∂ {KlØn¬\n∂pw˛
= ZrjvSn C√.
(1)
0T ˛ 30 T
= (ZrjvSn tI{μw ˛˛ 30)/2
(2) 30 T ˛ 60 T
= (ZrjvSn tI {μw˛˛ 60) + 15
(3) 60 T ˛ 90 T
T
T
˛ 120
= (120 ˛ ZrjvSn tI{μw)/2 + 30
(4) 90
= 150 ˛˛ ZrjvSn tI{μw
(5) 120T ˛ 150T
= (ZrjvSn tI{μw ˛˛ 150)
(6) 150T ˛ 180 T
= (300 ˛ ZrjvSn tI{μw)/2
(7) 180 T ˛ 300 T
T
T
= ZrjvSn C√.
(8) 300 ˛ 360