Phaladeepika - Appendix 2 Phaladeepika - Appendix 2 | Page 4

616 ^eZo]nI 2. ]qPyw _ew In´p∂ {Klw kqcy≥ BsI 252˛01 (˛˛) 180 Tiq\yw_ew72T˛01 ÿm\߃ N{μ≥ 432.01 180 T252T˛01 IpP≥ 252˛01 180 T72T˛01 _p[≥ 343T˛30 180 T163T˛30 hymgw 343T˛30 180 T163T˛30 ip{I≥ 432.01 180 T252T˛01 i\n 523.30 180 T343T˛30 3. `mhkv^pShpw {Klkv^pShpw XΩnep≈ hyXymkw. {Klw kqcy≥ N{μ≥ IpP≥ _p[≥ hymgw ip{I≥ i\n `mhkv^pSw 72T 01 ’ 252T 01’ 72T 01’ 163T 30’ 163T 30’ 252T 01’ 343T 30 ’ 50T 49’ 5T 42’ 48 T 145T 26’ 10 T 46’ 77T 51 (˛˛){Klkv^pSw 55T 31 241T 15* 265 T79* hyXymkw 16T 30 ’ 201T 12* 66T 19’ 115T 30’ 18T 5’ 360* 360* 360* ˛˛241T15 ˛˛265T 79* ˛˛201T˛12* 158T .48 66T .19 115T .30 18T .5 118T 45 94T 21 16 T.30 (*180T Un{Knbn¬ A[nIap≈ hyXymkw 360T˛¬\n∂pw Ipdbv°pWw.) 4. ZnIv _ew (hyXymkØns‚ aq∂nsem∂v ) {Klw kqcy≥ N{μ≥ IpP≥ _p[≥ hymgw ip{I≥ i\n T T T T T 158 .48 66 .19 115 .30 18 .5 118T 45 94T 21 hyXymkw 16 .30 T T T T T 52 ˛56’ 22 ˛7’ 38 ˛30’ 6 ˛1’ 39T˛35’ 31 T˛27’ aq∂nsem∂v 5 ˛30’ T T T T T 52 .93 22 .11 38 .50 6 02 39.T 58 31.T 45 ZimwiØn¬ 5 .50 DZmlcWPmXIØnse {KlßfpsS ZnKv_ew (ZimwiØn¬) : {Klw kqcy≥ N{μ≥ IpP≥ _p[≥ hymgw ZnIv _ew 5.50 52.93 22.11 38.50 6˛02 3. ip{I≥ i\n 39.58 31.45 ZrIv _ ew (1) ]q¿ÆZrjvSn : ]q¿ÆZrjvSn_ew ImWp∂ coXn 1. t\m°p∂ {KlØns‚ tcJmwiw t\m°s∏Sp∂ {KlØns‚ tcJmwiØn¬\n∂pw Ipd®v ZrjvSntI{μw ImWpI. 2. Cu ZrjvSntI{μw sh®v Xmsg sImSpØn´p≈ ]´nIbn¬\n∂pwZrjvSnaqeyw ImWpI. CXmWv B {KlØns‚ ZrjvSn_ew 1. ZrjvSnaqeyw ImWp∂Xn\p≈ tS_nƒ: t\m°p∂ {KlØn¬\n∂pw˛ = ZrjvSn C√. (1) 0T ˛ 30 T = (ZrjvSn tI{μw ˛˛ 30)/2 (2) 30 T ˛ 60 T = (ZrjvSn tI {μw˛˛ 60) + 15 (3) 60 T ˛ 90 T T T ˛ 120 = (120 ˛ ZrjvSn tI{μw)/2 + 30 (4) 90 = 150 ˛˛ ZrjvSn tI{μw (5) 120T ˛ 150T = (ZrjvSn tI{μw ˛˛ 150) (6) 150T ˛ 180 T = (300 ˛ ZrjvSn tI{μw)/2 (7) 180 T ˛ 300 T T T = ZrjvSn C√. (8) 300 ˛ 360