PECM Issue 40 2019 | Page 82

CONTROL & AUTOMATION WAREHOUSE ROBOTS INSPEKTO IMPROVING OPERATIONAL EFFICIENCY Traditional machine vision solutions wreak havoc on operational efficiency and the industry is ready for change. As the late Japanese industrial engineer Shigeo Shingo once said, “Improvement usually means doing something that we have never done before." Here Miki Gotlieb, VP of Operations at Inspekto, explains how Autonomous Machine Vision impacts operational efficiency in a way that has never been seen before. Traditional machine vision solutions, which have been around since the 1980s, are implemented in a project-based approach. The process requires the selection and acquisition of numerous components, including cameras, lenses, lighting, filters, computing platform and software from a range of suppliers. The QA manager is therefore subject to the lead times of the vendor of each piece of equipment — while the resulting overall lead time is governed by the long lead item (LLI). Once the integrator receives the components, they can then integrate them with one another, alongside the tedious task of preparing the software selected and then 82 PECM Issue 40 building a hard-engineered solution on the shop floor, before beginning the software training process. For a simple application, implementation can take several weeks to a few months. For a more complex solution, typical time frames are several months and, in some cases, go up to an entire year. In addition to these lengthy waits, since traditional machine vision solutions are specifically designed for a location on the production line, it is nearly impossible to move the solution from one location to another. Alongside this, the diagnostic tools for a traditional machine vision solution are often unique too, which means they are an expensive investment. In most cases the manufacturer is unable to diagnose a fault themselves, due to a lack of machine-vision specific knowledge and must instead rely on the integrator for assistance. This inability to address the issue immediately in-house delays manufacturing, which may have to be halted while the fault is addressed. One way to reduce the downtime should a machine vision solution become faulty is to stockpile spare components. A factory with several system configurations will keep spares of all unique system parts in order to achieve a decent mean time to repair (MTTR) and minimise the downtime in case of a malfunction. This increases costs and effort for the parts which must be maintained and managed.