PECM Issue 38 2019 | Page 139

Dye penetrant testing was completed to ensure the new rotor had no flaws. in order to save time, Sulzer proposed both stage 6 disks would be removed and possibly reinstated at a later date. This was then agreed by customer. Joining two sections of a turbine rotor requires considerable expertise, including computer modelling and finite element analysis (FEA) to ensure that the proposed design would withstand the stresses of normal operation. The FEA was also carried out at an overspeed of 3’600 rpm to ensure that the centrifugal loading on the disks would not cause any damage to the rotor shaft after the repair. With all the necessary analyses completed, the machine shop started to prepare the two rotor shaft sections for the addition of the stub shaft. In-house precision machining enabled the stub shaft to be shrink-fitted into the prepared connections before the whole joint area was preheated prior to the welding process. Using precision-controlled, submerged arc welding equipment, the stub shaft was built up to a level that would allow it to be machined back to the required dimensions. Once the original dimensions had been achieved, a series of non- destructive tests (NDT) was carried out to ensure there were no flaws in the completed rotor assembly. These processes were repeated to remove the cracks in the thrust end of the rotor as well, bringing the completed assembly back to finished dimensions. Once all the machining was complete, the rotor was dynamically balanced before being shipped back to the customer. IMPROVING PERFORMANCE While the repairs were being completed on the rotor, the field service team was working at the customer’s site to repair the diaphragm and improve the sealing of the casing. This work would be influential in improving the efficiency of the steam turbine. Prior to the project being started by Sulzer, the turbine required 393 tonnes of steam per hour to produce the 53.4 MW of energy. Despite one set of disks being removed, the repair to the static and rotor components of the turbine delivered by Sulzer, enabled it to maintain an output of 55.1 MW but using only 374 tonnes per hour of steam, which is an 8% improvement in efficiency. When the repaired turbine rotor arrived back on site, the field service team carried out the installation and commissioning, which included vibration testing at full load. All the results were well within the original specifications and the generator has remained at full capacity ever since. Andrianto concludes: “The customer was very impressed with the results of this project. In total, the whole repair took only 16 weeks, which is considerably less than the estimated lead time for a new rotor from the OEM, which is closer to 52 weeks.” About Sulzer Sulzer, headquartered in Winterthur, Switzerland, since 1834, specializes in pumping solutions, services for rotating equipment, and separation, mixing, and application technology. Sulzer provides cutting-edge maintenance and service solutions for rotating equipment dedicated to improving customers’ processes and business performance. Precision machining was required to ensure a perfect fit. www.sulzer.com Issue 38 PECM 139