PECM Issue 29 2017 | Page 62

rAre rADiAl SteAM tUrBine rejUvenAteD p recision reverse engineering resolves vibration issues Overhauling a steam turbine as part of a planned maintenance schedule is a regular task for many large-scale industrial enterprises that depend on these units to generate electrical power. However, for one pulp manufacturing plant in Eastern Canada, the refurbishment of its 25 MW Stal Laval radial steam turbine would need expert engineering to resolve the vibration issue – the first time this repair has been completed in North America and it would be successfully delivered by Sulzer. 62 PECM Issue 29 Industrial processes that have high power consumption often use on-site power generation to provide a cost effective power supply, but this entails also providing the necessary levels of maintenance support to keep the turbine operational. In many cases, this will be provided by a specialist service engineering company that has the necessary facilities and expertise to deliver timely repairs and maintenance. Minimizing repair times Steam turbines are used around the world to generate power, but the vast majority are of the axial flow design. In situations where radial flow designed units need to be repaired, they are usually shipped to Europe, where they are more accustomed to this design. However, this increases the total repair time, which is a crucial factor when the entire manufacturing process relies on this power source. Manufactured in the 1970s, the 25 MW Stal Laval radial turbine uses steam that enters along the center-line of machine and expands outwards through two contra-rotating rotors until it reaches the exhaust pipework on the periphery of the turbine. The two rotors, left hand (LH) and right hand (RH) are made up of nine and eight stages respectively and are each coupled to a generator.