Paradigmas Vol. 6, No. 1 | Page 70
Potenciar la utilidad de los métodos estadÃsticos
Referencias
Ayres, I. (2007). Super crunchers: How anything can be predicted. Londres: John Murray.
Bayarri, M. J., & Berger, J. O. (2004). The interplay of Bayesian and frequentist analysis. Statistical Science, 19, 58-80.
Becker, T. E. (2005). Potential problems in the statistical/control of variables in organizational research: A qualitative analysis with recommendations. Organizational Research Methods, 8, 274-289.
British Medical Journal. (2011). Research. Recuperado de http://resources.bmj.com/bmj/authors/types-of-article/research
Bolstad, W. M. (2004). Introduction to Bayesian statistics (2a ed.). Hoboken, NJ: Wiley.
Cashen, L. H., & Geiger, S. W. (2004). Statistical power and the testing of
null hypotheses: A review of contemporary management research
and recommendations for future studies. Organizational Research
Methods, 7, 151-167.
Christy, R., & Wood, M. (1999). Researching possibilities in marketing.
Qualitative Market Research, 2, 189-196.
Cohen, J. (1994). The earth is round (p < .05). American Psychologist,
49, 997-1003.
Cortina, J. M., & Folger, R. G. (1998). When is it acceptable to accept
a null hypothesis: No way Jose? Organizational Research Methods,
1, 334-350.
Coulson, M., Healey, M., Fidler, F., & Cumming, G. (2010). Confidence
intervals permit, but do not guarantee, better inference than statistical significance testing. Frontiers in Psychology, 1, 1-9.
Diaconis, P., & Efron, B. (1983, Mayo). Computer intensive methods in
statistics. Scientific American, 248, 96-108.
Paradigmas, ene.-jun., 2014, Vol. 6, No. 1, 37-73
| 71