Neuromag July 2016 | Page 17

Problem 1: Underpowered studies Collecting data is expensive, not only in terms of money but also in terms of time, effort, technician hours, materials, lab space and so on. However, operating with sample sizes too small for the effect in question is dangerous. Most people think that low power should only affect your chance of missing a true effect (i.e. beta, your type II error rate, or more precisely: the probability of incorrectly retaining the null hypothesis when it is false). And that is indeed the case. Power (1 – beta) gives you the probability of recognizing an effect when it is indeed there (i.e. the probability of correctly rejecting the null hypothesis). Low power does not affect your type I error rate, which is given by your alpha value, set by you in advance. So you Why? There is more to consider than the type I error rate or the p-value of your study. The p-value tells you: Given there is no effect, how likely is the data you observed (i.e. if the null hypothesis is true, what are the chances that you will obtain the actually observed effect or larger). You will reject the null hypothesis only if your data was very unlikely. But as someone that reads through the scientific literature in a particular area, you want to know: If this study tells me there is an effect, how likely is it that there actually is an effect? This is called positive predictive value (PPV) of a study**. Please note that the p-value tells you how likely your data is given there is no effect. The PPV tells you how likely the effect is true, given the study (which is closer to what we actually want to know). Let us further explore the difference that field? Since ideal homeopathic remedies are identical to placebo you will end up with 100 % false positive studies, i.e. a positive predictive value of a positive study of 0 (the homeopathy example is from here). That means if you read a positive study from that field showing a significant effect this does not increase the chance of that effect being true (admittedly this is an extreme case, but you get the point). When it comes to your own studies, you want the positive predictive value to be high. The positive predictive value of a study is higher 1. the more likely your effect, i.e. the ratio of investigated true and false hypotheses (which is very hard to estimate), 2. the lower your alpha value, and 3. the higher your power (and that is crucial). In this web app you can play with the parameters a bit and see how the PPV changes. Learn more about the PPV and the problem of underpowered studies here and here. The average PPV in neuroscience is probably somewhere around 50 % given well-intentioned estimates of average power and likelihood of an effect. That means, even if the researcher conducts a perfectly unbiased and honest study, the chances that a demonstrated effect is actually real is as likely as winning a coin toss. Problem 2: Scientific misconduct Outcomes of the replication initiative hardly resembled the original studies. Almost all original studies had been reported ‘significant’ (97 out of 100) with p-values < .05, the traditional threshold for significance. P-values in the replications, however, were spread all across the range between 0 and 1 and were mostly ‘not significant’ (p > .05). Even studies with very small p-values < .01 did not have a good chance to be replicated. Adapted from Open Science Collaboration (2015). could argue that if you plan an underpowered study it is your own risk. You will be the one missing an amazing effect because you chose to test 10 mice instead of 20. However, in addition to potentially wasting tax-payers money, which could otherwise be used to build schools and hospitals, you are also distorting the publication landscape. between the p-value and the positive predictive value. Imagine you work on homeopathy and you operate with an alpha value of .05. For a given study, you as an experimenter, will set the type I error rate to 5 % by rejecting the null hypothesis only if your observed p-value is below your alpha value of .05. However, if you look at the whole field of homeopathy research, what is the rate of false positive studies in Another obvious explanation is plain fraud. Despite several recent prominent cases of fraud (for a list of notable cases see the reference 19) people seem to believe that scientific misconduct is very rare or a problem confined to countries outside of Europe and North America. However, I think fraud is more common than we like to think and the limited data we have on this topic seem to confirm this. I do not think this is surprising given the high incentives for ‘clean’ positive results, given how difficult it is to publish negative results, given how easy it is to make some ‘minor adjustments’ to the numbers in your Excel table, and given the extreme competition scientists are confronted with. But even these ‘minor adjustments’, impossible July 2016 | NEUROMAG | 17