Network Magazine Winter 2019 | Page 61

Introduction: I’m pretty fortunate in the teaching I do at Southern Cross University, as it’s all focused on the Master of Clinical Exercise Physiology. One of the units I teach is ‘cardiovascular health’, for which students must learn to conduct clinical graded exercise tests – an important component of which is preparation and monitoring of a 12-lead electrocardiogram (ECG). Now, not only is stress testing and ECG my area of clinical expertise, but I’ve also got state of the art wireless 12-lead ECGs to teach the students on and use in our student-led clinics. As a fitness professional, you’ve probably known someone who has undergone a stress test or had a resting ECG. For our students, it’s critically important that they are able to recognise a number of heart arrhythmias, and that they can properly identify these arrhythmias at rest (as this may preclude the patient from even attempting to complete the stress test) and during exercise and recovery (to ensure there are no arrhythmias that develop during exercise or post-exercise, particularly life threatening arrhythmias, and that no changes occur on the ECG which are indicative of cardiovascular disease). The students must also ensure the haemodynamic (heart rate and blood pressure) responses are normal pre, during and post stress test. We must note that it is an absolute requirement that stress tests (submaximal or maximal) are conducted with ECG monitoring to help ensure the safety of each patient. And hence, ECG monitoring is considered the gold standard. Imagine if you could offer your clients that level of monitoring when they are exercising... if only! And this takes us into this Research Review, where Dr Thompson and her colleagues investigated the accuracy of assessing heart rate during exercise using wearable physical activity monitors. Now, Dr Walsh and I are once again delving into the holy grail of publications, as our 2016 Research Review (Wrist-worn tech: investment or waste of money?) stimulated a huge response (understandable, as a number of our readers found out that their costly device was inaccurate, ouch!). So please, remember that we are only providing factual findings from a published, peer-reviewed scientific study. Let us reiterate again in this Research Review, our 12-lead wireless ECGs cost in excess of $14,000 each, whereas consumer-orientated wearable devices are considerably less expensive, i.e. not even 5% of the price! So, to an extent, you do get what you pay for! Dr Thomas and her colleagues’ aim was to determine the validity of exercise heart rate at different intensities for two popular wearable devices; the Fitbit Charge 2 and the Apple Watch. These devices were compared to a simultaneous ECG monitoring. The protocol had participants wearing the Fitbit Charge 2 on their left wrist, the Apple Watch on their right wrist and a standard 12-lead ECG. Heart rate readings were taken each minute from each of the devices and ECG during the entire exercise protocol. The exercise protocol consisted of subjects completing a maximal exercise test using the Bruce Protocol treadmill test (Table 1). Heart rate was assessed in the last 10 seconds of every minute on both devices and the 12-lead ECG. TABLE 1. Bruce Protocol Treadmill Test Stage Minutes Speed (km/h) Grade(%) 1 3 2.7 10 2 6 4.0 12 3 9 5.4 14 4 12 6.7 16 5 15 8.0 18 6 18 8.8 20 7 21 9.6 22 8 24 10.4 24 9 27 11.2 26 Results: The resting heart rates were similar between genders: males at approximately 70 beats per minute and females slightly lower at 66 beats per minute. The researchers broke the exercise intensities down relative to each participant’s heart rate reserve (HRR: age- predicted heart rate max minus resting heart rate). Intensity was categorised according to the American College of Sports Medicine definitions of very light (<20% HRR), light (20– 40% HRR), moderate (40–60% HRR), vigorous (60–85% HRR), and very vigorous (>85% HRR). As this study had a large number of results, we have chosen here to focus on the ‘Group’ results for each of the intensities, in which the males’ and females’ data was combined into one group. NETWORK WINTER 2019 | 61