Momentum - The Magazine for Virginia Tech Mechanical Engineering Vol. 3 No. 3 Fall 2018 | Page 27

Zheng, also an affiliated faculty member of the Macromolecules Innovation Institute, has received grants to study nanoscale materials and scale them up to lightweight and func- tional materials for applications in aerospace, automobiles, and batteries. Previously, researchers could print graphene using an extrusion process, sort of like squeez- ing toothpaste, but that technique could only create simple objects that stacked on top of itself. “With that technique, there’s very limited structures you can create because there’s no support and the resolution is quite limited, so you can’t get freeform factors,” Zheng said. “What we did was to get these graphene layers to be architected into any shape that you want with high resolution.” This project began three years ago when Ryan Hensleigh, lead author of the article and now a third-year Macromolecular Science and Engineering Ph.D. student, began an intern- ship at the Lawrence Livermore National Lab- oratory in Livermore, California. Hensleigh started working with Zheng, who was then a member of the technical staff at Lawrence Livermore National Laboratory. When Zheng joined the faculty at Virginia Tech in 2016, Hensleigh followed as a student and continued working on this project. To create these complex structures, Hens- leigh started with graphene oxide, a precursor to graphene, crosslinking the sheets to form a porous hydrogel. Breaking the graphene oxide hydrogel with ultrasound and adding light-sensitive acrylate polymers, Hensleigh could use projection micro-stereolithography to create the desired solid 3D structure with the graphene oxide trapped in the long, rigid chains of acrylate polymer. Finally, Hensleigh would place the 3D structure in a furnace to burn off the polymers and fuse the object together, leaving behind a pure and lightweight graphene aerogel. “It’s a significant breakthrough compared to what’s been done,” Hensleigh said. “We can access pretty much any desired structure you want.” The key finding of this work, which was recently published with collaborators at Lawrence Liver- more National Laboratory in the journal Materials Horizons, is that the researchers created graphene structures with a resolution an order of magnitude finer than ever printed. Hensleigh said other processes could print down to 100 microns, but the new technique allows him to print down to 10 microns in resolution, which approaches the size of actual graphene sheets. Above: Zoomed-in scanning electron microscope picture of a graphene octet-truss at a resolution of 1 micrometer. Below: Zoomed-in scanning electron microscope picture of a graphene octet-truss at a resolution of 10 micrometers. “We’ve been able to show you can make a complex, three-dimensional architecture of graphene while still preserving some of its intrinsic prime properties,” Zheng said. “Usually when you try to 3D print graphene or scale up, you lose most of their lucrative mechanical properties found in its single sheet form.” Co-authors include Huachen Cui, a doctoral student in Zheng’s lab, and six people from Lawrence Livermore National Laboratory – James Oakdale, Jianchao Ye, Patrick Campbell, Eric Duoss, Christopher Spadaccini, and Marcus Worsley. Zheng and Hensleigh are funded by an Air Force Young Investigator Award (Dr. Jaimie S. Tiley) and the National Science Foundation. MOMENTUM FALL 2018 PAGE 27