Maximum Yield USA November 2018 | Page 48

These effects of increased yield and improved compositional quality in hydroponic crops from microbial interactions are likely to have occurred via complex processes, some of which are still not fully understood. Some species of beneficial rhizospheric bacteria are known to improve plant performance under stressful environments, improving yields either directly or indirectly. Some studies have shown that growth-promoting rhizobacteria may provide a direct boost to plant growth by providing fixed nitrogen, phytohormones, and iron that has been sequestered by bacterial siderophores and soluble phosphate. Other species may protect the plant from potentially highly damaging pathogens that would otherwise limit plant growth, quality, and yields. However, it’s likely the majority of root-associated bacteria that play a beneficial role in hydroponic plant growth do so by producing the plant hormone auxin as indole-3-acetic acid (IAA). Rhizobium bacteria develop in nodules on peanut plant root systems and fix atmospheric nitrogen for plant use. When plant roots sense an attack by pathogenic microbes, they release certain exudates called phytoalexins (defence proteins) and other unknown compounds, engaging in a process of underground chemical warfare. For example, the roots of sweet basil plants have been shown to release rosmarinic acid, an antimicrobial compound, in response to attacks by Phytophthora cinnamomi disease, which is possibly just one of many such defence responses we are yet to identify and understand. β€œ RELATIONSHIPS with beneficial microbe populations in the rhizosphere occur in hydroponics just as they do out in the field.” MICROBES AND HYDROPONIC SYSTEMS While a new hydroponic system may start off with very little in the way of microbial life, as soon as moisture and an organic carbon source (plants) are present, inoculation naturally begins. Microflora develop rapidly after planting a crop in a hydroponic system and consume plant exudates, compounds in the nutrient solution, and dead plant materials. Some of the microspecies may be pathogenic, however, these are generally outnumbered and outcompeted by populations of non-pathogenic organisms. In most hydroponic systems, the species of beneficial resident microflora most commonly found are Bacillus spp. Gliocladium spp, Trichoderma spp, and Pseudomonas spp. Hydroponic studies into the affects of various species of beneficial bacteria have found several positive results. Bacillus amyloliquefaciens has been shown to increase vitamin C content and water-use efficiency in tomatoes, while Bacillus licheniformis increased fruit diameter and weight of tomatoes and peppers, while promoting higher yields. A strain of Pseudomonas sp. has been found to promote growth of hydroponic tomato crops and increase the uptake of calcium, which in turn reduced blossom end rot of tomato fruit. In hydroponic strawberries, inoculation with plant growth promoting rhizobacteria (Azospirillum brasilense) resulted in a higher sweetness index and a greater concentration of flavonoids and flavonols in the fruit as well as increasing the concentration of micronutrients (iron). In hydroponic tomato studies evaluating a number of different plant growth promoting rhizobacteria, it was found that Bacillus spp. (strain 66/3) was effective in increasing tomato yield significantly β€” this increase in marketable yield was 37 and 18 per cent compared to untreated control plants in fall and spring crops respectively. 48 Maximum Yield An association with a wide range of beneficial micro flora has been proven to help maintain healthy root systems.