Maximum Yield USA February 2019 | Page 38

Behind the root cap is the cortex, which makes up the bulk of the rest of the root. The cortex is loosely packed with cells and empty space, both of which store water and allow it to flow into the xylem vessels, sending water and dissolved nutrients to the above-ground shoot systems. Roots lack openings such as the stomata found in leaves. Rather, roots are covered in thin-walled cells, known as parenchyma cells, which act as a water-absorbing membrane. These are primarily found in the cortex of the root. This entire outer wall of the cortex is known as the epiblema and the main conduit for this transport at the center of the cortex is known as the endodermis. Unlike the rest of the cortex, the cells in the endodermis are more tightly arranged so water does not escape back into the cortex but can be sent on its merry way upwards through passage cells. However, this does not happen until the water and nutrients have passed the root system’s smell test. To that end, the endodermis is a plant guardian. If the plant has inadvertently absorbed any toxic material, the endodermis filters it out and rejects it. A waxy barrier known as the Casparian strip is the gatekeeper at play here. Proteins within the cells allow for the good compounds and molecules to pass, while toxins are weeded out and removed. Root hairs are an extension of the endodermis. These fine, long, and narrow projections grow out from mature roots, helping increase a root system’s ability to absorb moisture and nutrients by increasing the root system’s surface area, which increases contact between roots and soil. The stele, pericycle, conjunctive tissue, and vascular bundles round out some of the lineup that make up the typical root. If you really, really want to know more about the intricate functions of roots, or have a severe case of insomnia, look up “histogen theory” and/or “Quiescent Center.” For our purposes here, these go way beyond the realm of useful knowledge for the layman horticulturist, this author included. 38 Maximum Yield o n c e inside the roots or root cells, water and dissolved nutrients travel through different root pathways in one of two ways — either symplastic movement or apoplastic movement.” The Secret World of Roots Root systems are a network of connected botanical append- ages whose entire mass can sometimes dwarf the above- ground portion of the plant it is supporting. It takes a lot of work behind the scenes to feed and care for all the flowers, fruits, and leaves getting most of the accolades. They don’t, however, work alone. The root (mostly below ground) and shoot (mostly above ground) systems work in unison in a positive feedback loop. Though an oversimplification of the process, it’s safe to say the photosynthesis work the leaves and greens do sends nutrients below to the root system, which is then able to expand and grow, sending more food and water upward so more leaves can be produced. Then more photosyn- thesis can occur, and more roots can develop and so on. Roots are constantly attracting and transporting water and dissolved nutrients from the medium they are in. Deep down in the root cells, a pressure builds. This root pressure creates a siphon-like action which forces water and nutrients up into the above-ground portions of the plant while water and nutri- ents from the surrounding soil are drawn into the root. This is due to the higher concentration of nutrients and minerals inside the root cells than in the soil environment around the root system. In addition to this force, moisture from the soil is continually being absorbed into the roots by the negative water potential within the root cells.