Maximum Yield USA August/September 2019 | Page 35

A s both a process and vocation, controlled environment agriculture (CEA) is intimately entwined with technology. As CEA gets increasingly sophisticated through technological advancements, how these developments will affect horticultural processes and, in turn, world food supplies, remains largely unknown. At the forefront of new frontiers in CEA technology lies artificial intelligence (AI), which can potentially forever change the way humankind procures fresh produce, largely by replacing human labor with mechanized production. We live in a world increasingly dependent upon, and defined by, technology. This notion rings true in almost every facet of day-to-day life in the 21st century, including communication, entertainment, and work. Similarly, for those living in the Western world, this same technology contributes to meeting our general human needs, as food is readily available for most people at grocery stores and beyond. Yet, our current food subsistence patterns are far from infallible and the technologies that make commercial agriculture possible are falling short on several fronts. These shortcomings are evident in pesticide- and preservative-laden food sources as well as hungry human populations in less-fortunate regions of the globe. Over the last few decades, CEA production has grown leaps and bounds in its scale and capabilities. Many believe CEA practices such as urban agriculture and vertical farming will eventually help resolve global food crises. This positive outlook is largely because of technological advancements in “smart” environmental controls and LED lighting, which have made CEA production viable, as well as profitable, on a commercial scale for the first time. Sophisticated irrigation systems have also drastically reduced the amount of human labor required in propagating crops. For many CEA advocates and technology authorities, AI is the next phase in streamlining and sophisticating agricultural procedure as well as global subsistence patterns. Why Artificial Intelligence? There are several reasons why AI has so much potential in the world of CEA. These reasons mainly have to do with notions of horticultural processes and labor efficiency. Today, automation is already an essential element in most CEA growing, and its benefits are related to both consistency and efficiency in operations. For example, smart controllers take much of the guesswork out of troubleshooting environmental issues, while fertigation systems accomplish irrigation in a controlled and effective fashion. Artificial intelligence has the capabilities to take these advancements even further. Technology authorities postulate that AI can potentially circumvent human interaction with horticultural processes and garden maintenance almost in their entirety. According to agfundernews.com: “Hypothetically, it is possible for machines to learn to solve any problem on Earth relating to the physical interaction of all things within a defined or contained environment… by using artificial intelligence and machine learning.” The important take away here is the idea AI systems can learn as well as make choices based on the objective constraints that dictate rational human decision making. Concerning both production and labor, this avant garde theory pushes notions of CEA automation to their absolute extremes. This AI learning concept postulates robots would be at the controls of environmental and irrigation systems that currently require human intervention in the way of fine tuning and decision making. Also, AI could circumvent human error from these processes by removing the human labor needed to grow CEA crops. Maximum Yield 35