Maximum Yield USA 2016 June | Page 72

PURIFYING YOUR WATER A reverse osmosis membrane. Say you pour a bit of gasoline onto a plate in a room. Initially, you can only smell the gasoline right next to the plate, but not on the other side of the room. Eventually, the gasoline evaporates and diffuses throughout the room until the molecules are equally spaced from each other and are as far apart from each other as they can get. This process is driven by entropy, a basic operating principle of the universe. The probability that the gasoline molecules will spontaneously all find themselves back together as a liquid on the plate at some point in the future is so small (although it isn’t zero!) that we confidently assume it to be an impossible event. The same principle applies to solids such as salts when they are dissolved in water. To the extent that a substance is soluble in a solvent such as water, a solute will distribute itself randomly in the solvent until equilibrium is reached and the concentration of solute is the same everywhere in the solution. The universe likes things this way. “ 70 Cell membranes are selectively permeable. They allow water and many other things to pass, but there are even more things, such as sugars and large protein molecules, that cannot pass. Maximum Yield USA  | June 2016 Let’s move onto osmosis. Here’s a simple situation to help explain it: For osmosis to occur, a barrier must exist between two solutions that have different solute concentrations. This barrier must allow water to pass through it while blocking the passage of whatever solute molecules exist in solution (remember, this is a highly simplified example). The water will move across the selectively permeable membrane in the direction that decreases the concentration of solute molecules. This makes the solute particles farther apart from each other and less organized (entropy in action). Osmosis continues until a new equilibrium state is reached. Water molecules continue crossing the membrane, but the rate of crossing in one direction is equal to the rate of crossing in the opposite direction. The reason people have an easier time understanding “regular” diffusion is because it’s more intuitive to imagine the solute molecules moving until they are as randomized as possible. It is harder to picture the solvent molecules diffusing to randomize the solute particles. But that’s the way it is. Here is one final example to help solidify your understanding of osmosis: Say you place some red blood cells in a solution of pure water—a classic experiment. Cell membranes are selectively permeable. They allow water and many other things to pass, but there are even more things, such as sugars an d large protein molecules, that cannot pass. Since the solute concentration inside the cells is much greater than the solute concentration outside the cells, which is essentially zero, water flows into the cells by osmosis to try and make the two concentrations equal. In fact, the cells will eventually