Maximum Yield USA 2015 April | Page 69

advertorial “even the best mycorrhizal fungi work better when combined with phosphorus solubilizing bacteria.” and extend the root zone by sending out threadlike hypha into the surrounding soil. In exchange for the plant’s sugars, the fungi unlock unavailable phosphorus from the soil and feed it to the plant. But even the best mycorrhizal fungi work better when combined with phosphorus solubilizing bacteria. The bacteria hitch a ride on the fungi as it penetrates the soil, and swim to places in the soil solution that the fungi can’t reach. As the bacteria reproduce, they exude organic acids and enzymes that unlock phosphorus from soil particles and organic matter and feed it to the fungi. The phosphorus solubilizing bacteria also colonize the developing root hairs to directly feed the plant. So when choosing inoculants to use as a “starter blend”, make sure that it is dominated by beneficial bacteria. In addition to mineralization, some plant-growth-promoting rhizobacteria actually make rooting hormones directly on the surface of the roots. For example, as plants grow they exude amino acids from root cells. One of the amino acids is called tryptophan. Beneficial microorganisms such as Bacillus subtilis and Bacillus firmus feed on the tryptophan and change it into a powerful auxin called IAA (indole acetic acid). The auxin stimulates new root growth. Other microorganisms on the dream team are especially adept at producing growth hormones called cytokinins. Cytokinins stimulate cell division. So the combination of auxins and cytokinins work together to stimulate more lateral root growth and more root mass. The results? Better root strike, more efficient uptake of water and minerals, and a healthier and more stress resistant plant. Speaking of stress, did you know that some beneficial microorganisms can actually rescue plants from stress? During times of heat stress, drought stress or UV stress plants produce ethylene gas. The ethylene signals the plants to stop producing new root and shoot growth and the plant temporarily shuts down. But some microorganisms produce an enzyme called ACC deaminase that blocks the production of ethylene and rescues normal plant growth. The plant recovers more quickly from stress and continues to grow and reproduce instead of going into shock. Therefore, any good “maintenance blend” of microbial inoculants should contain a healthy dose of ACC+ bacteria. Some microorganisms have been isolated from disease suppressive soils and provide an extra level of protection from pathogens. For example, Bacillus subtilis GB03 is registered as a bio-pesticide and helps protect plants against root rot. Other beneficial microorganisms such as actinomycetes and Pseudomonas fluorescens provide protection against a wide range of pathogens, including infectious bacteria, fungi and even viruses. But one of the best defensive players on the microbial dream team is trichoderma sp. Trichoderma is actually a beneficial fungus, but it parasitizes and feeds on other fungi! It also helps feed the plant and activates the plant’s natural immune system. Generally speaking, it’s much better to inoculate plants with multiple forms of plant-growthpromoting rhizobacteria than it is to use a single strain. For example, P. fluorescens has been isolated from disease-suppressive soils, but when used alone can decrease yields. It’s also been found that some yeasts (Saccharomyces cerevisiae) don’t play well with our friendly trichodermas. So choose carefully when selecting a polymicrobial blend, and know what you’re looking for. If you’re using water soluble nutrients and choose a blend that’s loaded with endo- and ecto-mycorrhizal fungi, you are wasting your money! By using the perfect blend of growth promoting and disease suppressing microbes, you can have the best of both worlds! It’s also important to choose a blend that’s formulated specifically for the correct stage of plant growth. A good “starter blend” should be loaded with phosphorus solubilizers combined with a healthy complement of growth hormone producers. On the other hand, a good “bloom” or “maintenance blend” should be better at stress protection and growth promotion. Some microbes even produce a bouquet of volatile organic compounds that help the plant produce more blooms and bigger blooms. Volatile organic compounds produced by specific bacillus sp. can activate up to 600 different growth regulating genes in the plant! By switching on the genes that tell the plant to keep manufacturing and storing sugars, it is possible to keep your favorite plants biologically active all the way to the day of harvest. In short, microorganisms are the biostimulant factories, with different microorganisms performing different roles at different times. The right team of microbes can help your plants reach their true genetic potential. So get to know the key players in the root zone. The more you know, the better you’ll grow!