Multiplication of two complex numbers
Let z1 = a + ib and z2 = c + id be any two complex numbers . Then , z1 * z2 = ( ac – bd ) + i ( ad + bc )
For example , ( 3 + i5 ) ( 2 + i6 ) = ( 3 * 2 – 5 * 6 ) + i ( 3 * 6 + 5 * 2 ) = -24 + i28 The multiplication of complex numbers satisfies the following properties :
o |
Closure law : z1 * z2 = complex Number |
o |
Commutative law : z1 * z2 = z2 * z1 |
o |
Associative law : ( z1 * z2 ) * z3 = z1 * ( z2 * z3 ). |
o |
Multiplicative identity : z * 1 = z . |
o |
Multiplicative inverse : z * ( 1 / z ) = 1 . |
( where z ≠ 0 ) |
o |
Distributive law : z1 ( z2 + z3 ) = z1 z2 + z1 z3 |
Division of two complex numbers
Given any two complex numbers z1 and z2 , where z2 ≠ 0 , z1 / z2 = z1 * ( 1 / z2 )
For example , let z1 = 2 + 3i and z2 = 2 + 2i , z1 * z2 = ( 2 + 3i )/ ( 2 + 2i ) To solve this , we will rationalize the denominator z1 * z2 = ( 2 + 3i )/ ( 2 + 2i ) * ( 2- 2i )/ ( 2- 2i ) = ( -2 + i10 ) / 8 = -1 / 4 + i5 / 4
Power of i
o i 2 = -1 o i 3 = -i o i 4 = 1 o i 5 = i o i 6 = -1 o i -1 = -i o i -2 = -1 o i -3 = i o i -4 = 1