o
Both are true or false together o Both sufficient and necessary condition . E . g . Krishna will eat if and only if food is Apple .
Contrapositive , Converse , Inverse Statement : if p then q Converse : if q then p Inverse : if not p then not q Contrapositive : if not q then not p If a statement is true , contrapositive is also true . If converse is true , the inverse is also logically true .
Contrapositive Contra positive of a given statement “ if p , then q ” is if ~ q , then ~ p .
Statement : If object is square , then object is Polygon If object is triangle , then object is Polygon
Contra positive : If object is not polygon , then it is not Square If object is not polygon , then it is not Triangle
Statement : |
If p à then q |
Contra positive : |
If ~ q à then ~ p |
If statement is true then contra positive is also true . |