MACHINERY LUBRICATION- INDIA SEPTEMBER-OCTOBER 2019 | Page 23

MLI Heat Exchanger Flushing and Cleaning In a shell-and-tube type of heat exchanger, oil flows over the tubes. Water flow is ported through the tubes in the opposite direction. The heat in the oil is transferred from the oil to the water. To achieve the most efficient heat transfer, the water flow should be 25 percent of the oil flow. The water flow can be controlled by manual valves, a water-modulating valve or an electrical solenoid valve. Circulating hot wash oil or light distillate through the tube or shell side can effectively remove sludge or similar soft deposits. Soft salt deposits may be washed out by circulating hot, fresh water. A mild alkaline solution such as Oakite or a 1.5-percent solution of sodium hydroxide or nitric acid can be used. The tubes should be flushed in the opposite direction that the oil normally flows. If an air cooler is employed, verify that the cooler fan is turned on at approximately 120 degrees F and turned off at about 105 degrees F. Keep the fins clean so daylight can be seen through them. If necessary, combs should be utilized to straighten the fins on the unit. When cleaning the fins with an air hose, care should be taken so as not to damage them. drain line, then the pump should be changed. An excellent method of monitoring the case drain flow while operating is to permanently install a flow meter in the case drain line. Fixed-displacement pumps can be tested by checking the flow through the relief valve. Turn on the pump and record the flow out of the relief valve tank line for one minute. Next, reduce the setting of the relief valve to its minimum setting. There should be less than a 10-percent difference in flow rates between the two tests. If a pump is badly worn, the flow will be considerably less at the highest pressure. Accumulator Testing An accumulator that is used for volume should be pre-charged with dry nitrogen to one-half to two-thirds the pump’s compensator setting. When the hydraulic system is turned off, a charging rig with a gauge can be utilized to check the pre-charge level. To confirm an accumulator is operating properly, check the side of the shell with a temperature gun or infrared camera. The bottom half should be hotter than the top half. If heat is only indicated at the bottom, the accumulator may be overcharged. If there is no heat, the bladder may have ruptured, the piston seals may be bad, the pre-charge may be above the compensator setting or all the nitrogen may have leaked out. If heat is felt all the way to the top, the accumulator is undercharged. Another check that can be made is to watch the system pressure gauge while the system is operating. The pressure should not normally drop more than 100-500 pounds per square inch (PSI) when the accumulator is properly pre-charged. If piston accumulators are used, the charging rig should be installed when the system is down and the oil bled off the top of the piston. With the pump on and the bleed valve open, there should be little or no flow out of the bleed Pump Testing On variable-volume pumps, check the flow out of the case drain line by porting the line into a container and timing it. This test should be made with the outlet pressure at the maximum level. It is not recommended that the line be held during this test. Secure the line to the container prior to starting the pump. The normal case flow is 1-5 percent of the maximum pump volume. Vane pumps usually bypass more than piston-type pumps. If 10 percent of the maximum volume flows out of the case Test a fixed-displacement pump by turning on the pump and recording the flow out of the relief valve tank line for one minute. www.machinerylubricationindia.com | September - October 2019 | 21