tulevikku kui selle asemel saaks kasutada aegruumi tunnelit ehk teleportatsiooni. Kvantpõimitus näitab väga selgelt kvantmehaanika tulenemist osakeste teleportreerumistest aegruumis nii nagu seda näitab ka osakeste läbimine barjäärist teatud tõenäosuse olemasolul.
Kvantmehaanika sellist teleportmehaanilist formalismi( kvantmehaanika on tegelikult teleportmehaanika) on võimalik katseliselt ka tõestada. See seisneb järgnevas. Eksperimentaalsel ajas rändamisel pannakse inimene ruumis teleportreeruma( inimest teleportreeruda ajas ja ruumis korraga ei saa). See tähendab seda, et inimene teleportreerub ruumipunktist A ruumipunkti B. Ruumipunktide A ja B vahel võib eksisteerida mingi suvaline tõke – näiteks betoonsein. Sellisel juhul inimene teleportreerub läbi betoonseina. Kuid taoline nähtus esineb ka kvantmehaanikas, kus osake võib teatud füüsikalistel tingimustel läbida potentsiaalbarjääri. Antud katses on potentsiaalbarjääriks betoonsein ja inimene on väga suure massiga, kui võrrelda seda osakese massiga. Mõlemad nähtused on väga sarnased( mis viitab identsusele) ja see tähendab seda, et need kaks nähtust on sisuliselt üks ja sama. Nii füüsikas tõestataksegi eksperimentaalselt kvantmehaanika teleportatsioonilist olemust ja päritolu.
Teleportreerumisel ei läbi keha ruumis kõiki ruumipunkte nagu tavalise liikumise puhul. Sama on tegelikult ka ajas teleportreerumisega. Näiteks kui keha teleportreerub ajas, siis see läbib samuti erinevaid tõkkeid nagu ruumi teleportatsiooni korralgi. See tähendab seda, et kui keha X teleportreerub ühest ajahetkest teise ajahetke ja nende ajahetkede vahepeal eksisteeris keha Y, siis see keha Y ei sega kehal X jõuda ühest ajahetkest teise ajahetke.
1.3.3 Kvantmehaanika füüsikalised alused
Järgnevalt uurime palju lähemalt mikroosakeste kvantmehaaniliste ilmingute tulenevust nende samade osakeste lainelistest omadustest, kuna osakeste lainelised omadused tulenevad omakorda osakeste teleportreerumistest aegruumis( mida me kohe alljärgnevalt näeme).
134