Maailmataju 5 veebruar 2014 | Page 24

kokku. Kõik värvused on tingitud keemiliste elementide olemasolust Universumis. Näiteks hapnik helendab sügavsiniselt, lämmastik roheliselt, väävel kollaselt jne. Kuid vesinik helendab kas punaselt või roheliselt, sõltuvalt sellest, et milline on vesiniku energiatase. Kosmose objektidest näeme palju värvilisi pilte. Kuid selle saamiseks hangitakse energiat elek- tromagnetilise spektri kogu nähtavast osast. Värvipildid saadakse peamiselt kolme erineva värvi kombineerimisel. Näiteks punane, roheline ja sinine on kolm põhivärvust. Kõik teised värvused on nende kolme värvi kombinatsioon. Erinevaid värvusi võib olla isegi miljoneid. Et aga saada värvide puhtust ja originaalsust leiutas 1930. aastal värvifilmitööstus Technicolor selleks vastava tehno- loogia. Läbi punase, rohelise ja sinise filtri säriti korraga kolm mustvalget filmirulli. Seejärel lasti mustvalged filmid läbi samasuguste värvifiltrite. Pärast seda trükiti need korraga ühele värvifilmile. Niimoodi sooritavad ka kosmost fotografeerides kaamerad. Pilte sooritatakse läbi erinevate värvifiltrite. Enamasti pannakse kokku täielik loomulike värvide spekter. Seda saadakse siis, kui mõdasid filtreid kasutatakse kohakuti. Kuid astronoomid kasutavad ka mingite kindlate valgussa- gedustele häälestatuid filtreid. Sellisel juhul kasutatakse pikkusühikut nimega ongström. Üks ongström on üks kümnemiljondik meetrit. Näiteks Päikese aktiivsetes piirkondades olev vesinik helendab lainepikkusel 6562 ongströmi. Filtrid võivad näidata ka struktuure detailsemalt. Selleks nad blokeerivad ülearuseid lainepikkusi. Kosmosekaameratel on enamasti kümneid värvifiltreid. Just selliste kaameratega on saadud kõige paremad fotod. Näiteks kosmoseteleskoobil Hubble´il on olemas täiustatud ülevaatekaamera, samuti ka marsikulguri kaamerad, kosmosejaama Cassini kaamera Saturnil jne. Need on kaamerad tegemaks teaduslikku tööd. Need filtrid jagavad valguse värvid väga täpselt. Fototöötlusega ühendatakse kogu selline informatsioon kujutiseks. Teaduslik ja esteetiline foto oma olemuselt tegelikult väga ei erinegi. Igasugune foto peab ( võimaluse korral ) sisaldama värvitoone mustast kuni valgeni. See tähendab seda, et esindatud peab olema täielik spektri skaala. Fotode värve uuritakse ja analüüsitakse juba teaduslikult, et saada detailidest üha rohkem infot. Kuid digitaalfotograafia kasutusele võtuga hakati kosmosepiltidele lisama ka tehisvärve. See sai alguse 1970. aastal. Näiteks erinevaid värvitoone anti hallidele värvidele. Kuid need fotod ei kaotanud oma väärtust. Nad omasid sellegipoolest teaduslikku infot, mida siis astronoomid analüüsida said. 1980. aastail tehti väga palju kosmosepilte. Tänapäeva arvutitöötlus suudab töödelda veelgi keerulisemat digitaalset pilditöötlust. Värvitoone määratakse tänapäeval palju täpsemalt, kui seda aastakümneid tagasi teha sai. Kuid foto koostamine vajab subjektiivset tõlgendamist ja lähenemist. Enamasti koostatakse kosmosepilt teleskoobi abiga või saadetakse pilt otse kosmoseaparaadist Maale. Näiteks arvati kunagi seda, et Jupiteri ammooniumi jääkristallidest pilved peaksid olema valged. Arvati ka seda, et Marsi atmosfäär on samuti sinaka tooniga nii nagu Maa atmosfääri korral. Kuid hiljem selgus, et Marsi atmosfäär on hoopis roosaka tooniga. Universumis on olemas ka selliseid elektromagnetlaineid ( värvivarjundeid ), mis ulatub nähtava valguse lainepikkuste piirkonnast väljapoole. Näiteks on olemas infrapunakiirgus ( mis on põhjustatud soojast tolmust ), raadiolained ( mis levib tähtedevahelises gaasis ), röntgenikiirgus ( mis on põhjustatud kõrgtemperatuurilisest plasmast ). Need kiirgused on oma olemuselt täpselt ühesugused – elektromagnetlained, kuid need erinevad oma lainepikkuste poolest. Valgus on elektromagnetlaine. Heli on aga füüsikalise keskkonna tiheduse perioodilise muutumi- se levimine ruumis. Nähtav valgus moodustab ainult imetillukese osa kogu elektromagnetlainete skaalast. Kui me ei tea peale nähtava valguse ka teisi elek