Maailmataju 31. March 2015 | Page 93

kirjutame teistmoodi välja nii kus m0c2 nimetatakse keha paigalseisu energiaks ehk seisuenergiaks. Seisuenergia ja kineetilise energia summa on aga järgmine: ja seda nimetatakse ka vaba keha koguenergiaks. Mass ja energia on ekvivalentsed suurused. Keha relativistlik mass on ka keha koguenergia mõõt. ( Uder 1997, 66-67 ). Keha koguenergia ja seisuenergia avaldises ei võeta arvesse keha potentsiaalset energiat, mis on tingitud valise välja olemasolust. Ei arvestata keha potentsiaalse energia muutumist välises jõuväljas. On teada seda, et kõik energiad „taanduvad“ potentsiaalseteks või kineetilisteks energiateks. Muud võimalust ei olegi. Kuid mis energia see E = mc2 siis on? Mis see tegelikult on ? Kõik kehad eksisteerivad peale hyperuumi ka tavaruumis, kus on olemas aeg ja ruum. Aeg on pidevalt „liikuv“. Aeg ei jää kunagi „seisma“. Liikuvatel kehadel on üksteise suhtes kineetiline energia. Aga kõik kehad liiguvad ka aja suhtes või vastupidi. Aeg ei ole mingisugune objekt. See on ka ainus vahe – erinevus. Niimoodi see energia E = mc2 kõikidele kehadele tulebki Universumis. Energia mc2 on oma olemuselt siiski keha kineetiline energia aja suhtes. Kõik kehad ju liiguvad hyperruumi ( K´ ) suhtes. Tavaruum ( K ) liigub hyperruumi ( K´ ) suhtes kiirusega c. Järelikult kõikidel kehadel on kineetiline energia, seega ka mass. Niimoodi on energia mc2 kineetiline energia ruumi ( hyperruumi ) suhtes. E = mc2 on keha aegruumi ( suhtes olev ) energia. 1.3.2 Üldrelatiivsusteooria ajas rändamise teoorias 1.3.2.1 Sissejuhatus Albert Einstein lõi üldrelatiivsusteooria peaaegu kümme aastat pärast erirelatiivsusteooria loomist. Ta üldistas seda mis tahes taustsüsteemidele, sest erirelatiivsusteoorias käsitleti ainult inertsiaalseid taustsüsteeme. Kuid üldrelatiivsusteoorias võetakse arvesse ka mitteinertsiaalseid taustsüsteeme. Need on kiirendusega liikuvad süsteemid. Seepärast teooria üldisem ongi. Gravitatsioonijõu mõjul liiguvad gravitatsiooniväljas vabad kehad kiirendusega. Üldrelatiivsusteooria on seepärast relativistlik gravitatsioonivälja teooria. Gravitatsioonijõu ja inertsijõu vahel ei ole mingisugust vahet. Sellisele ekvivalentsuseprintsiibile ongi üles ehitatud kogu üldrelatiivsusteooria. Sellist printsiipi tõestavad kõik eksperimentaalsed katsed, mis näitavad raske ja inertse massi samasust. Need on võrdsed. Seega gravitatsioonivälja on võimalik asendada inertsijõudude väljaga. Näiteks keerleva kosmoselaeva tsentrifugaaljõud tõukab kehad kosmoselaeva välisseisnte poole. Sein muutub keerlevas kosmoselaevas põrandaks, millel on inimesel võimalik kõndida. Selline tekkiv tsentrifugaaljõud ( ehk inertsijõud ) on sarnane gravitatsioonijõuga. Niimoodi simuleeritakse gravitatsiooni eksisteerimist kosmoselaevas. Raske ja inertse massi võrdsust nimetatakse nõrgaks ekvivalentsusprintsiibiks, kuid tugevast ekvivalentsusprintsiibist järeldub valguskiire kõverdumine gravitatsiooni poolt. Kiirenevalt liikuvate süsteemide matemaatilisel kirjeldamisel jõutakse välja mittehomogeense ruumi mõisteni. Massiivsete kehade ümber muutub ruum kõveraks. Seal hakkavad vabad kehad liikuma kiirendusega. Sellega seletataksegi gravitatsiooni. Kõveras ruumis on vaba keha kiirendusega 71