Maailmataju 31. March 2015 | Page 110

Kuid sellel avaldisel on ka üldisem kuju: kus U = U ( x ). Sellist nähtust nimetatakse sageli tunneliefektiks. Suurus U0 – E on ju tegelikult osakese ( kineetiline ) energia. Osakese lainepikkus ja energia on omavahel väga seotud. Osakese lainepikkus ju sõltub energiast järgmiselt: Siin on näha seda, et mida suurem on osakese energia ja/või mass, seda väiksem on osakese lainepikkus. Kui aga lainepikkus on võrdne barjääri laiusega või on sellest suurem ehk kui E < U0, siis on olemas nullist erinev tõenäosus selleks, et osake läbib potentsiaalbarjääri, mis on täiesti võimatu klassikalise mehaanika järgi. Osakeste tunnelefekt võimaldab reaalses maailmas näiteks aatomi tuumade α-lagunemist. Tuuma XA α-lagunemisel tekib tuum z-2YA-4 ja α-osake. Seda kirjeldab järgmine matemaatiline võrrand: z A A-4 + α. Peaaegu alati kindla energiaga α-osakesi kiirgavad α-radioaktiivsed tuumad, zX → z-2Y mille energia on 4-10 MeV. See energia on kõikidel rasketel tuumadel potentsiaalbarjääri kõrgusest väiksem. Tuuma sees võib arvestada potentsiaalset energiat, mille väärtus on null. Kuid väljaspool tuuma võime arvestada sellise elektrilise potentsiaalse energiaga, mida kirjeldab võrrand: ( ( = kus (z-2)e on tuumalaeng ja 2e on α-osakese laeng. Seda sellepärast, et väljaspool tuuma peame arvestama tekkinud uut tuuma ja α-osakest. U0=U(R) võime lugeda potentsiaalbarjääri kõrguseks, mis füüsikaliselt tähendab lähtetuuma raadiuse kaugusel olevat tekkinud elektrilise potentsiaalse energia väärtust. Tuuma α-lagunemine toimub siis, kui E˂U0 ja seda tunnelefekti tõttu. Osakeste tunnelefektis on täiesti selgelt näha seda, et esineb osakeste teleportatsiooni omaduse üks nähtusi. Kui mikroosake teleportreerub, siis on tal võimalus läbida tõkkeid ( barjääre ) ja seda me siin ju nägimegi. See tähendab seda, et selline nähtus kvantfüüsikas on võimalik ainult mikroosakese teleportreerudes aegruumis. Seda me juba käsitlesime pisut ka teleportmehaanika aluste peatükis. Kui barjäär on väga õhuke ( hinnanguliselt – umbes osakese lainepikkuse suurusjärgus ), võib siis osakese laine levida läbi barjääri, jätkudes teisel pool taas siinuslainena, kuid palju väiksema amplituudiga ( leiutõenäosusega ). Elektromagnetlaine peegeldumisel pinnast aga satuvad osakesed ( footonid ) väga lühikeseks ajaks pinna sisse. Kuna osake võib teatud tõenäosusega läbida potentsiaalbarjääri, siis seega tuleneb see osakese laine omadustest või osakese teleportreerumistest aegruumis, mis omakorda põhjustab osakese lainelist omadust. Seda sellepärast, et absoluutselt igasugune füüsiline keha saab läbida teisi kehasid ainult aegruumis teleportreerudes ja seda reedabki osakese võime läbida erinevaid potentsiaalbarjääre. Mõlemad füüsikalised tõlgendusviisid on ühtaegu võimalikud. Kuna mikroosakeste käitumised võivad olla põhjustatud nende osakeste teleportreerumistest aegruumis, siis järgnevalt esitame mõned postulaadid, mis kirjeldaksid olukorda ( loogiliselt peaksid paika ), kui 88