Maailmataju 31. March 2015 | Page 108

läbib valgus vaakumis ühe sekundi jooksul ligikaudu 300 000 km vahemaa. lüheneb. Kvantmehaanika: Kvantmehaanika: Valgusel esinevad difraktsiooni ja inteferentsi nähtused. Osakeste korral esinevad tuntud määramatuse seosed. Osakeste käitumine on tõenäosuslik ja seega valguse osakesed ehk footonid teleportreeruvad aegruumis. Elektronide kvantmehaanilised aspektid on kõik täpselt samad, mis footonite korralgi. Antud juhul käsitleme siin peamiselt kvantmehaanika füüsikalisi aluseid, mitte niivõrd selle matemaatikat. Nii tegime ka relatiivsusteoorias. Püüame arusaada ja mõista nende füüsikateooriate just füüsikalist olemust laskumata seejuures nii väga sügavale matemaatikasse. Teleportmehaanika ( teleportatsiooni ) peatükis oli käsitletud teleportatsiooni olemusest ja selle liikidest. Kuid nüüd hakkame me vaatama seda, et kuidas teleportatsioon ( selle mehaanika ) on seotud kvantmehaanikaga. Edaspidi hakkame me veenduma selles, et ka kvantmehaanika ei ole tegelikult midagi muud kui sisuliselt teleportmehaanika üks avaldumisvorme, mis on täiesti kooskõlas ajas rändamise teooriaga. Et aga selles veenduda, tuli kõige pealt tutvust teha just teleportatsiooni peatüki endaga. Kvantfüüsika formalismi järgi on mikroosakesel korpuskulaarsed omadused ja veel lisaks ka lainelised omadused. Osakese korpuskulaarsed füüsikalised suurused on näiteks mass, impulss, energia jne. Osakese laine füüsikalised suurused on aga lainepikkus, sagedus, periood jne. Ajas rändamise teooria seisukohast lähtudes on aga osakese laine füüsikalised suurused seotud just osakese pideva teleportreerumistega aegruumis. Näiteks kui osake teleportreerub ühest ruumipunktist teise, siis selle kahe ruumipunkti vaheline kaugus ongi lainepikkus. Sagedus näitab teleportreerumiste arvu ajaühikus – seda, et kui palju on osake teleportreerunud mingis kindlas ajaühikus. Periood näitab siis aega, mis kulus ühest ruumipunktist teise teleportreerumiseks, sest teleportreerutakse peale ruumis ka veel ajas. Järgnevalt hakkame kõiki neid osakese kvantefekte pikemalt uurima. 1.4.2 Kvantmehaanika formalism Inimesed näevad igapäevaselt liikuvaid füüsilisi kehasid. Näiteks mingi keha liigub ruumis ruumipunktist A ruumipunkti B ja selgelt näib, et keha läbib oma liikumistrajektooril kõik ruumipunktide A ja B vahel olevaid punkte. Selles seisnebki sügav füüsikaline probleem: nimelt keha ei saa läbida oma liikumistrajektooril kõiki A ja B vahelisi ruumipunkte, sest neid oleks lihtsalt lõpmatult palju ehk ruumipunktide A ja B vaheline kaugus oleks lõpmatult suur ja seega kestaks keha liikumine ruumipunktist A ruumipunkti B lõpmatult kaua. See aga tegelikkuses nii ei ole ja järelikult keha „liikumine“ ruumipunktist A ruumipunkti B ei ole tegelikult pidev ( ei läbita liikumistrajektooril olevaid kõiki ruumipunkte ), vaid keha „liikumine“ on „kvanditud“ ehk keha läbib ainult osalisi ruumipunkte oma liikumistrajektooril. Seetõttu on aegruum tegelikult „kvanditud“ ehk kehade liikumised Universumis ei ole pidevad. Formaalselt mõistame me seda kehade teleportreerumistena aegruumis. Makrokehade liikumise mittepidevus avaldub alles aegruumi kvanttasandil nii nagu ainete mittepidevus aegruumi kvanttasandil molekulide ja 86