Maailmataju 31. March 2015 | Page 105

meetriline, mis ajas ei muutu. Selline on vorm harmoonilistes koordinaatides. (Silde 1974, 165-169) Albert Einsteini võrrandid Aegruumi kõveruse põhjustab ruumis eksisteeriv energia ja mass, kuid nüüd me teame seda, et aeg ja ruum tegelikult ei „kõverdu“, vaid need hoopis „kaovad“ - lakkavad eksisteerimast vastavalt ajas rändamise teooriale. Seda siis kirjeldatakse aegruumi kõverdusena ( geomeetriaga ). Sündmuste koordinaatidel ei ole kõveras aegruumis enam meetrilist mõtet. Riemanni meetrika kirjeldab sündmuste vahelist kaugust ds: gik ( x ) on siis funktsioon, mis sõltub kuueteistkümnest aegruumi punktist x ja seda nimetatakse meetrilise tensori g( x ) komponentideks – meetriliseks tensoriks või lihtsalt meetrikaks. Meetriline tensor on sümmeetriline: ja sellepärast on 10 sõltumatut komponenti meetriliselt tensoril, mis on igas aegruumi punktis. Taustsüsteemi ehk koordinaatsüsteemi valikust sõltub meetrilise tensori komponentide kuju. Kuid viimase valemi koordinaatsüsteemi valikust ei sõltu kahe sündmuse vaheline kaugus ehk intervall. Erinevad meetrilised tensorid g(x) kirjeldavad meetrikat, mis on erinevates kõverates aegruumides. Just aine ja energia eksisteerimine mõjutavad aegruumi geomeetriat ehk meetrikat. Samuti ka selle aine või energia liikumine aegruumis. Seda kirjeldavad matemaatiliselt A. Einsteini võrrandid: G on sümmeetriline tensor, mida nimetatakse ka Einsteini tensoriks. Einsteini tensoril on aga 10 sõltumatut komponenti Gik = Gki. Need avalduvad meetrilise tensori g komponentide ja nende esimest ja teist järku tuletiste kaudu. Einsteini tensor kirjeldab seda, et kui kõver on aegruum. Energia-impulsstensor T on ka sümmeetriline tensor, millel on kümme sõltumatut komponenti: Tik = Tki Tensor T kirjeldab seda, et kuidas aine liigub aegruumis ja kuidas on jaotunud energia ja aine aegruumis. Need võrrandid on omavahel seotud kümne mittelineaarse teist järku osatuletistega diferantsiaalvõrrandite süsteemiga. Aine ja energia jaotus ja liikumine põhjustab aegruumi kõverust – seda need võrrandid kirjeldavadki. Need võrrandid kirjeldavad ka kõvera aegruumi mõju aine – energia – jaotusele ja liikumisele. Tensor on füüsikalist või geomeetrilist suurust kirjeldav matemaatiline objekt. Koordinaatsüsteemi valikust sõltuvad tensorit kirjeldavad komponendid, kuid tensor ise ei sõltu koordinaatsüsteemi valikust. Need võrrandid kirjeldavad gravitatsioonivälja ( aegruumi kõveruse ) tekitamist materiaalsete objektide poolt ja selle tekitatud välja mõjust objektide liikumisele. ( Mankin, Räim, Laas; 1.7. ). 83