LIMOUSIN TODAY October 2017 | Page 36

Reproduction commercial crossbred populations. Unfortunately, there are not yet any independent, peer-reviewed papers in the scientific literature documenting the field performance of genomic tests for commercial heifer selection. Value of genomic testing To estimate the value of genomic testing for replacement heifers, Van Eenennaam modeled the breakeven cost of testing all 45 potential replacement heifers born per 100 cows (weaning rate = 90%; 50% female) per year in a commercial herd with a replacement rate of 20 percent (i.e. 20 replacement heifers were selected each year). For this estimate it was assumed that the commercial producer was not basing heifer replacement decisions on performance records. To select replacement heifers a multiple-trait maternal selection index was developed that included maternal, pre-weaning performance, post-weaning performance, and carcass traits. For economic weightings, it was assumed that the producer was retaining ownership 34 | OCTOBER 2017 through feeding and marketing the cattle on a value based grid. The maternal trait with the highest relative economic value in that index was weaning rate (i.e. number of calves weaned per cow exposed). A hypothetical DNA test with an intermediate accuracy (0.3) with regard to the selection objective was then modeled. The breakeven cost of testing replacement heifers was approximately $24 per test. In other words, to test all of your potential replacement heifers the cost of the test would need to be under $24 for it to provide a positive return on investment assuming the accuracy of the test is 0.3. As the accuracy of the test increases, the breakeven cost will decrease. Of this value, less than $10 was associated with traits of economic value to the cow-calf sector (i.e. cow-calf producer that does not retain ownership), with the majority of the value being realized by post-weaning genetic improvement (i.e. feedlot/carcass traits). If we consider that producers are likely to have at least a visual estimate of weight, and possibly some information on the age of the heifer, utilizing this information would further decrease the breakeven value of the information provided by genomics testing. The value of obtaining a commercial replacement heifer genetic evaluation is significantly less than that for bulls because bulls produce more descendants from which to derive returns for accelerated genetic improvement. The breakeven estimate of $24 per test does not take into consideration the possibility of reallocating those funds for improved bull selection. For the herd with 45 replacement heifers the potential investment would be $1080. The question becomes, which is better, investing more in the sires that will produce the future replacement heifers or spending the money on a tool to improve the selection of the current crop of replacement heifers? It should be noted these calculations are based on the value of genomic information to make heifer replacement decisions in a commercial beef herd. The dairy industry is successfully using genomic testing on commercial replacement females. However, there are some important differences between the dairy and beef industry that make genomic testing of commercial