Journal of Rehabilitation Medicine 51-6 | Page 67

Validity and reliability of a spatiotemporal gait-analysis system tiotemporal gait parameters for barefoot comfortable walking with the stationary SGAS setup (Table III). The CoV decreased gradually when averaging more footsteps. Four footsteps were required to reach a CoV below 10% for step length, step time, and stance time. The Bland-Altman plots showed no heteroscedasticity (Fig. 4). For double support time, 8 footsteps were re- quired. For the shod walking condition, similar results were found. The sample sizes of the toe walking and slow gait speed conditions were too small, considering that there were fewer than 10 valid trials of footsteps per subject (sample sizes of 10 and 15 subjects, re- spectively). The minimum number of footsteps needed for ade- quate reliability during comfortable barefoot walking by the moving SGAS camera in 30 subjects were 3 footsteps for step length, step time, and stance time and 7 footsteps for double support time. Inter- and intra-rater reliability For assessment of the inter- and intra-rater reliability, 304–316 trials were used. Step length, step time, and stance time values had excellent agreement between the 3 observers (ICC ≥ 0.94 and lower limit of the 95% CIs ≥ 0.86). Inter-rater agreement on double support time was moderate (ICC 0.68 and 95% CI 0.48–0.79). Intra-rater reliability was excellent for step length, step time, and stance time (ICC ≥ 0.98 and lower limit of the 95% CIs ≥ 0.97), and good for double support time (ICC 0.84 and 95% CI 0.80–0.87). DISCUSSION This study found that the SGAS is a valid and reliable system to assess step length, step time, stance time, stride length, and stride time under different walking conditions. The stationary, as well as the moving, ca- mera set-up can be used to determine these spatiotem- poral gait parameters. However, validity could not be confirmed for double support time and swing time. A minimum of 4 footsteps was needed to obtain a reliable assessment of step length, step time, and stance time with the SGAS. Inter- and intra-rater reliability were confirmed for step length, step time, and stance time. There is a need for low-cost and portable gait ana- lysis technology in clinical settings. Such technology needs to be assessed for validity and reliability in assessing spatiotemporal gait parameters, such as in the current study using a 1-camera method. One other study using a 1-camera system examined the validity between this system and a reference 3-dimensional motion capture system (20). They found differences in accuracy between the 2 systems that were similar 461 compared with the current study for the temporal parameters. However, they found larger differences between the system and the reference for the spa- tial parameters compared with our study, which may, among other possible explanations, be due to the choice of reference system. Results on reliability and measurement error were not reported in that study. Furthermore, they examined the validity for different gait speed conditions with the subjects wearing ankle socks, but not for the conditions of toe walking or shod walking. The Microsoft Kinect v2, which is a camera system extracting data from 3-dimensional skeletal modelling, has been shown to provide valid results for temporal parameters. Although results on accuracy for spatial parameters were inconsistent between studies (19, 21–24), one study showed an ICC of 0.76 for step length (95% CI –0.17 to 0.95) and an absolute and relative error of 10 cm (SD 5 cm) (21). Other low- cost alternatives using footswitches, accelerometers, gyroscopes, and inertial measurement units have been shown to be accurate in measuring temporal gait pa- rameters, but are currently either unable or inaccurate to measure spatial parameters (25–30). Moreover, the advantage of a camera system over these methods is that video images of the person are obtained, which can be used for clinical assessment of gait pathology. The SGAS is a feasible, easy-to-use measurement instrument for clinical practice and research purposes. In the current study, position and time assessment to calculate the spatiotemporal gait parameters from the SGAS user interface was a manual process. For expe- rienced observers, position and time assessment for 10 trials in one walking condition took approximately 10–15 min. The observers noted that the video capture with time resolution of 0.02 s regularly missed the ex- act moment of initial contact or toe off, complicating the assessment. However, this did not compromise the reliability, since the results show that accurate data can be obtained with a 50 Hz sampling rate. The stationary camera set-up can be used in all settings, but is restric- ted by the field of view. In this study, the chosen field of view was 130 cm, to provide good spatial resolution for accuracy, but at the expense of being able to assess full strides. The use of a moving camera set-up solves this problem and, additionally, requires less effort from persons, as multiple steps are analysed in a single trial. A moving SGAS camera does, however, require a rail placed parallel to the walkway and a steady tripod on wheels. Recordings from the SGAS can be combined with other gait recordings (e.g. electromyography and force plate). In this study, double support time and swing time could not be assessed in a valid and reliable way with the SGAS using the GAITRite® system as a reference. J Rehabil Med 51, 2019