Journal of Rehabilitation Medicine 51-1CompleteIssue | Page 75

72 K. Akizuki et al. effect of BBS or TUG in this population. The Unstable Board Balance Test was also designed to be portable and not restricted by the measurement environment, as well as providing objective, quanti- tative measures promptly. Therefore, the purpose of the current study was to determine the sensitivity and specificity of the Unstable Board Balance Test in differentiating individuals with a positive history for falls among a group of healthy, active, elderly individuals, and to compare the results with those from the TUG and FRT. If the Unstable Board Balance Test is valid in detecting slight reductions in the balance capacity of individuals with a fall history, then the test could be useful for early identification of those at risk of falls in the community, allowing for the opportunity to provide a falls prevention intervention. METHODS Subjects In this study, we recruited elderly people living near the Iwatsuki Campus of Mejiro University, who attended the Saitama City Silver Resource Center between 28 February 2017, and 4 August 2017. The inclusion criteria were as follows: (i) age ≥ 65 years; (ii) living independently in the community; (iii) ability to walk independently, without an assistive device; and (iv) ability to visit the university facility where the study was conducted, without assistance. Individuals with a history of orthopaedic surgery that could affect balance or neurological diseases, as well as those with pain when performing the unstable board balance test and those with a Mini-Mental State Examination (MMSE) score < 24 were excluded. In order to calculate the sample size required for the study, a preliminary survey of 29 subjects was performed. The effect size of the Medial-lateral Stability Index (MLSI), the primary outcome of the Unstable Board Balance Test, was 1.33, with a ratio of 5:24 between individuals with a history of fall (fal- lers) and those without a history of falls (non-fallers). Using G*power 3.1.9.2 software (17), the required sample size was calculated for an alpha value of 0.05 and power (1 – β) of 0.80. A sample size of 36 individuals (6 fallers and 30 non-fallers) was required. In order to control for confounding variables during the matching between fallers and non-fallers, we made the decision to recruit 58 individuals, to have at least 10 fallers and appropriate non-faller matched controls. A preliminary explanation of the details of the study was given to all subjects, and written consent was obtained. The study protocol was approved by the institutional review board of Mejiro University (approval number 17-004). a) b) Fig. 1. The unstable board used in this study. (a) Top surface, (b) bottom surface. Unstable Board Balance Test. All tests were performed using the DYJOC unstable board (SAKAI Medical Co. Ltd, Tokyo, Japan). The DYJOC board has a dimension, of 300 × 500 × 30 mm with 2 semi-circular bosses (φ160 × 60 mm) attached to the rear of the platform. For this study, the 2 bosses were attached to restrict the tilt movement to the medial-lateral (ML) direction (Fig. 1), as allowing unrestricted movement in all directions ma- kes the task too difficult to complete for elderly individuals. In addition, blocks were inserted on either side of the board to allow a maximum tilt angle of 12° (Fig. 2). The board was fitted with a small 3-axial accelerometer and a 3-axial gyroscope (multi sensor θ, SAKAI Medical Co. Ltd) to measure the tilt degree and the acceleration. The data were transmitted to a personal computer via a dedicated data logger (Data Logger, SAKAI Medical Co. Ltd). The MLSI was calculated using analysis software (MS DYJOC, SAKAI Medical Co. Ltd), as follows: MLSI = √ ∑–(0–x) n , where x is the degree of tilt of the board in the ML plane and n the number of samples (sampling frequency, 100 Hz). Because the given stability index reflects the change in the inclination of the unstable board per unit time, a larger value indicates a greater degree of fluctuation in ML balance control. Subjects were instructed to stand on the board, with feet at shoulder width and arms along the side of the body, and to maintain the position of the unstable board as parallel to the floor as possible. Subjects were asked to fix their gaze on a focal point placed 1 m in front of them, which was adjusted to eye level for each subject. All measurements were obtained without shoes. Each subject completed 3 20-s trials. 2 Functional reach test (FRT). The subject was instructed to stand sideways along a wall, to which a measuring tape was affixed, with the arm closest to the wall at 90° of shoulder flexion. In this standardized standing position, the location of the tip of the third Experimental design and outcome This was a case-control study, with the following measures ob- tained for analysis: demographic and personal information (age, body height, body weight, history of falls over the past year) and balance performance outcomes (Unstable Board Balance Test score, the FRT and the TUG). The BBS was not included due to its previously reported ceiling effect for healthy, active, elderly individuals (13, 15). The measurement method for each balance performance test is described below. www.medicaljournals.se/jrm Fig. 2. Tilt angle adjustment method. The maximum tilt angle was limited to 12° by placing a 2.5-cm plate on both sides of the board.