Journal of Rehabilitation Medicine 51-1CompleteIssue | Page 40

Factors associated with persistent post-concussion symptoms between presence of persisting novel PCS and anxiety symptoms, as well as with mental and to a lesser extent physical quality of life on the SF-12. That is, individu- als who reported lower QoL also reported persisting novel or worsening PCS. Of the predictive factors examined, 3 were signi- ficantly associated with persistent PCS: premorbid psychological issues, LOC, and having no recall of receiving information at discharge from ED. Older age was associated with less PCS reporting than in the middle or younger age-groups, but this was not a significant predictor in the final model. The strongest predictor, namely premorbid mental health issues, has been associated with persistent PCS in numerous stu- dies to date (2, 8–10, 23, 24, 38). It has been speculated previously that individuals with a pre-injury psychiatric history may respond to the experience of mTBI and PCS with greater anxiety, which may, in turn, exacerbate their PCS (37). The association of anxiety with PCS reporting supports this premise and is consistent with recent findings by van der Naalt et al. (10). Nevertheless, the presence of LOC was also associa- ted with persistent PCS, suggesting that the severity of the injury did also contribute to persistent symptoms in this study. The study sample had relatively mild injuries, with only 19.8% having any reported LOC. Previous studies have shown mixed findings, but many have not examined LOC as a predictor, or not found it to be a significant predictor (9). Some previous studies of mTBI outcomes have only included cases with some LOC (2, 8, 37), whereas others have also included a substantial majority without documented LOC (4, 24). From the results of the present study, it would appear that the occurrence of LOC may be an important injury severity marker. The duration of LOC has possibly proven less useful in previous studies, due to variability in methods of its measurement (7, 9). Finally, it was apparent that a higher percentage of participants who reported novel PCS post-injury reported not receiving information about mTBI and PCS at discharge from ED than those who were unsure. Of participants unsure about whether they received information, a higher proportion did not report novel PCS than did. This lends some support to the use of such information. Although an inexpensive and rela- tively simple form of intervention, the results of our recently completed implementation trial suggested that achieving reliable distribution of such informa- Bosch M, McKenzie JE, Ponsford J, Turner S, Chau M, Tavender EJ, et al. Evaluation of a targeted, theory-informed implementation intervention designed to increase uptake of emergency management recommendations regarding adult patients with mild traumatic brain injury: Results of the NET cluster randomised trial. PLoS Med (in submission). 1 37 tion is extremely difficult 1 . However, it also needs to be pointed out that those who did recall receiving the information did not report significantly fewer symp- toms that those who did not recall it at this long time after injury. This study had limitations and results need to be viewed in light of several factors. All predictive models accounted for only a small proportion of the variance, suggesting that there are other factors accounting for reporting of PCS at follow-up that were not measured in the current study (e.g. maladaptive coping (10), post- injury neuropsychological functioning (9), and pre- sence of neck pain in the ED, PCS and post-traumatic stress at 2 weeks post-injury (39)). The participants in this study had very mild injuries, with more than 80% having no LOC and 95.6% having a GCS of 15/15 on presentation to the ED. In part this reflected the fact that only patients with GCS of 14 or 15 were included in the study. However, 85.7% were not scanned, making it possible that some complicated mTBI participants were included in the study, which could have confounded the results. The mean age of participants of 54 years was older than that seen in most mTBI samples, with a higher than usual proportion of women and of injuries due to falls. This may reflect that the participating EDs in this study were predominantly short stay units rather than trauma centres, where many large mTBI studies have historically been conducted and more complex trauma cases are likely to be included, with more as- sociated injuries other than mTBI and potential for post-traumatic stress. This highlights the importance of considering sampling methods in relation to findings from mTBI studies. Only a small proportion of EDs approached agreed to participate in the NET trial and these were predominantly short-stay units rather than trauma centres. This may have influenced the rates of symptom reporting for the above-mentioned reasons. Furthermore, follow-up took place at a wide-ranging interval of 130–321 days post-injury. Whilst time post- injury was not associated with symptom reporting, this relatively long delay after injury may have influenced reliability of recall of information provided. Although all intervention centres were instructed to use the designated information booklets, we cannot be sure that they provided this information rather than some other form of information. Finally, there are limitations related to data collection via the telephone; namely, the inability to control the participant’s environment or see their body language. Overall, this study has identified that the majority of individuals presenting to EDs with uncomplicated mTBI (GCS 14–15) make a good recovery. A relatively small, but significant, proportion (18.7%) have signifi- cant persisting problems. They are more likely to have J Rehabil Med 51, 2019