Journal of Rehabilitation Medicine 51-10 | Page 13

Robotic locomotor training in rehabilitation A, Ribeill C, Kalke YB, et al. Gait training after spinal cord injury: safety, feasibility and gait function following 8 weeks of training with the exoskeletons from Ekso Bionics article. Spinal Cord 2018; 56: 106–116. 14. Evans N, Hartigan C, Kandilakis C, Pharo E, Clesson I. Acute cardiorespiratory and metabolic responses during exoskeleton-assisted walking overground among persons with chronic spinal cord injury. Top Spinal Cord Inj Rehabil 2015; 21: 122–132. 15. Sale P, Russo EF, Russo M, Masiero S, Piccione F, Calabrò RS, et al. Effects on mobility training and de-adaptations in subjects with spinal cord injury due to a wearable ro- bot: a preliminary report. BMC Neurol 2016; 16: 12–20. 16. Sale P, Russo EF, Scarton A, Calabro RS, Masiero S, Filoni S. Training for mobility with exoskeleton robot in person with spinal cord injury: a pilot study. Eur J Phys Rehabil Med 2018; 54: 745–751. 17. Yang A, Asselin P, Knezevic S, Kornfeld S, Spungen A. As- sessment of in-hospital walking velocity and level of assis- tance in a powered exoskeleton in persons with spinal cord injury. Top Spinal Cord Inj Rehabil 2015; 21: 100–109. 18. Esquenazi A, Talaty M, Packel A, Saulino M. The Rewalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury. Am J Phys Med Rehabil 2012; 91: 911–921. 19. Zeilig G, Weingarden H, Zwecker M, Dudkiewicz I, Bloch A, Esquenazi A. Safety and tolerance of the ReWalkTM exoske- leton suit for ambulation by people with complete spinal cord injury: a pilot study. J Spinal Cord Med 2012; 35: 101–196. 20. Spungen AM, Asseslin PK, Fineberg DB, Kornfeld SD, Harel NY. Exoskeletal-assisted walking for persons with motor-complete paraplegia. NATO Sci Technol Organ 2013; 6: 6–14. 21. Lonini L, Shawen N, Scanlan K, Rymer WZ, Kording KP, Jayaraman A. Accelerometry-enabled measurement of walking performance with a robotic exoskeleton: a pilot study. J Neuroeng Rehabil 2016; 13: 1–10. 22. Hartigan C, Kandilakis C, Dalley S, Clausen M, Wilson E, Morrison S, et al. Mobility outcomes following five training sessions with a powered exoskeleton. Top Spinal Cord Inj Rehabil 2015; 21: 93–99. 23. Fineberg DB, Asselin P, Harel NY, Agranova-Breyter I, Kornfeld SD, Bauman WA, et al. Vertical ground reaction force-based analysis of powered exoskeleton-assisted walking in persons with motor-complete paraplegia. J Spinal Cord Med 2013; 36: 313–321. 24. Kozlowski A, Bryce T, Dijkers M. Time and effort required by persons with spinal cord injury to learn to use a po- wered exoskeleton for assisted walking. Top Spinal Cord Inj Rehabil 2015; 21: 110–121. 25. Platz T, Gillner A, Borgwaldt N, Kroll S, Roschka S. Device- training for individuals with thoracic and lumbar spinal cord injury using a powered exoskeleton for technically assisted mobility: achievements and user satisfaction. Biomed Res Int 2016; 2016: 8459018. 26. Stampacchia G, Rustici A, Bigazzi S, Gerini A, Tombini T, Mazzoleni S. Walking with a powered robotic exoskeleton: subjective experience, spasticity and pain in spinal cord injured persons. NeuroRehabilitation 2016; 39: 277–283. 27. Gagnon DH, Vermette M, Duclos C, Aubertin-Leheudre M, Ahmed S, Kairy D. Satisfaction and perceptions of long- term manual wheelchair users with a spinal cord injury upon completion of a locomotor training program with an overground robotic exoskeleton. Disabil Rehabil Assist Technol 2019; 14: 138–145. 28. Andrews AW, Chinworth SA, Bourassa M, Garvin M, Benton D, Tanner S. Update on distance and velocity requirements for community ambulation. J Geriatr Phys Ther 2010; 33: 128–134. 29. Forrest GF, Hutchinson K, Lorenz DJ, Buehner JJ, VanHiel LR, Sisto SA, et al. Are the 10 meter and 6 minute walk tests redundant in patients with spinal cord injury? PLoS One 2014; 9: 1–10. 733 30. Gagnon DH, Escalona MJ, Vermette M, Carvalho LP, Ka- relis AD, Duclos C, et al. Locomotor training using an overground robotic exoskeleton in long-term manual wheelchair users with a chronic spinal cord injury living in the community: lessons learned from a feasibility study in terms of recruitment, attendance, learnability, performa. J Neuroeng Rehabil 2018; 15: 1–12. 31. Myers J, Lee M, Kiratli J. Cardiovascular disease in spinal cord injury: an overview of prevalence, risk, evaluation, and management. Am J Phys Med Rehabil 2007; 86: 142–152. 32. Krassioukov A. Autonomic function following cervical spinal cord injury. Respir Physiol Neurobiol 2009; 169: 157–164. 33. Teasell RW, Arnold JMO, Krassioukov A, Delaney GA, Rw AT, Jmo A, et al. Cardiovascular consequences of loss of supraspinal control of the sympathetic nervous system after spinal cord injury. ACRM 2000; 81: 506–516. 34. Nash MS. Exercise as a health-promoting activity following spinal cord injury. J Neurol Phys Ther 2005; 29: 87–103. 35. Aach M, Meindl RC, Geßmann J, Schildhauer TA, Citak M, Cruciger O. Exoskelette in der Rehabilitation Querschnitt- gelähmter: Möglichkeiten und Grenzen. Unfallchirurg 2015; 118: 130–137. 36. Koyama S, Tanabe S, Saitoh E, Hirano S, Shimizu Y, Katoh M, et al. Characterization of unexpected postural changes during robot-assisted gait training in paraplegic patients. Spinal Cord 2016; 54: 120–125. 37. Karelis A, Carvalho L, Castillo M, Gagnon D, Aubertin- Leheudre M. Effect on body composition and bone mineral density of walking with a robotic exoskeleton in adults with chronic spinal cord injury. J Rehabil Med 2017; 49: 84–87. 38. van Dijsseldonk RB, Rijken H, van Nes IJW, van de Meent H, Keijsers NLW. A framework for measuring the progress in exoskeleton skills in people with complete spinal cord injury. Front Neurosci 2017; 11: 1–12. 39. Maynard FM, Bracken MB, Creasey G, Ditunno JF, Donovan WH, Ducker B, et al. International standards for neuro- logical and functional classification of spinal cord injury. Spinal Cord 1997; 35: 266–274. 40. Tanabe S, Hirano S, Saitoh E. Wearable power-assist loco- motor (WPAL) for supporting upright walking in persons with paraplegia. NeuroRehabilitation 2013; 33: 99–106. Appendix I. Mean 6-min walk test (6MWT) outcomes in individuals with spinal cord injury (SCI) using robotic locomotor training (RLT) Author (reference) 6MWT Asselin et al. (2015) (6) Esquenazi et al. (2012) (18) Velocity = 0.27±0.11 m/s Distance = 77.5 (10.8–150.4) m Hartigan et al. (2015) (22) Velocity = 0.22 (0.03–0.42) m/s Distance: C5–8 = 64 m T1–8 = 74 m Spungen et al. (2013) (20) Yang et al. (2015) (17) T9–L1 = 121 m Distance = 99.1±48 m Velocity = 0.36 m/s Zeilig et al. (2012) (19) Distance = 129 m Distance = 47±20.8 m Outcomes represent mean distance/velocity scores. Appendix II. Mean 10-metre walk test (10MWT) velocity in individuals with spinal cord injury (SCI) using robotic locomotor training (RLT). Author (reference) 10MWT, m/s Esquenazi et al. (2012) (18) Fineberg et al. (2013) (23) 0.25 Min assist = 0.16±0.06 Hartigan et al. (2015) (22) No assist = 0.31±0.02 C5–8 = 0.22 Lonini et al. (2016) (21) Spungen et al. (2013) (20) Yang et al. (2015) (17) T9–L1 = 0.45 0.365 0.302±0.145 0.38 T1–8 = 0.26 Outcomes represent mean velocity score. J Rehabil Med 51, 2019