Johnson Controls (JCI) HVACR Trends - GineersNow Engineering Magazine Key Trends Making Our Cities Greener & Smarter | Page 16

MACHINE-TO-MACHINE COMMUNICATIONS, also commonly referred to as M2M or the Internet of Things (IoT), is attracting a lot of interest and investment from key smart city stakeholders. While people have been connected to other people and their various software applications via the Internet for many years, people are now able to connect to everyday devices such as thermostats, door locks and lights from anywhere at any time. The devices can also talk to themselves, either individually or as part of integrated systems, providing greater functionality and efficiency. Hospitals use about three times as much energy as a similarly sized office building due to 24x7 operations and energy intensive processes such as operating room conditioning. A typical surgical suite is unoccupied 70-80 percent of the time during the week and up to 95 percent on weekends. By integrating the building management system with the surgical scheduling system and electronic patient records, excess energy used to condition, pressurize and ventilate the operating room can be reduced when unoccupied, saving an average of US$6,000 per year while delivering and documenting safer and more comfortable conditions. The use of ANALYTICS is also a key trend and is often associated with the term “big data.” Indeed, the process of translating raw data into useful insight and action is a key to delivering smarter capabilities for buildings, communities and cities. This analysis can be done by experienced data scientists or, increasingly in an automated manner using cloud computing, 14 HVACR Leaders • May 2017 machine learning and other advanced statistical methods. The new Stanford University central energy facility is an example of the latest trends in advanced analytics. The central energy system is managed by an enterprise optimization system that automatically creates predictive models of hourly campus heating and cooling requirements seven days in advance. The model predictive control system then uses weather forecasts and predictions of hourly energy pricing from the utility to optimize the control of heat recovery chillers and the dispatch of hot and chilled water storage. The system is projected to save $US 420M over the next 35 years and can operate in a fully automated real-time manner. The REAL-TIME implementation of advanced sensing and analytics allows continuous optimization of building, energy, transportation and infrastructure systems resulting in greater operational and resource efficiency. Real- time traffic management works by measuring the traffic flow through an intersection and then automatically adjusting cycle lengths, splits and offsets between intersections to maximize throughput, minimize delays and reduce the number of stops. Other smart city transportation applications includes London’s CCTV-based system with more than 1500 cameras that monitor and manage incidents and events 24-hours a day and Singapore’s 9Km tunnel management system, which monitors more than 25,000 devices in one 9km tunnel. Visitors to Singapore might remember its innovative real-time parking management system from well over a decade ago.