3. Insights
Although data has been hailed as the new oil, just like with oil, the value depends on whether we can clean it, refine it, and use it to fuel something impactful. Without a model, a system, a framework, or reliable data science, any data will be useless, just like 0s and 1s. But with the right expertise and tools, data can be turned into insights. This is where technology gives way to analytics — the science that helps us give meaning to the data. To the degree that we have meaningful insights, a story, a notion of what may be going on and why, or a model, we will be able to test this model through a prediction. The point here is not to be right, but to find better ways of being wrong. All models are wrong to some degree, but some are more useful than others.
4. Action
But even getting to the insights stage is not enough. As a matter of fact, the most interesting, captivating, and curious insights will go to waste without a solid plan to turn them into actions. As Ajay Agrawal and colleagues argue, even with the best AI, data science, and analytics, it is up to us humans to work out what to do with a prediction. Suppose that your insights tell you that a certain type of leader is more likely to derail — how will you change your internal hiring and development process? Or what if it tells you that customers dislike a certain product — how will this influence your product development and marketing strategy? And suppose that you can predict if some clients are at risk of going to your competitors, what will you do? AI can make predictions, and data can give us insights, but the “so what” part requires actions, and these actions need the relevant skills, processes, and change management. This is why talent plays such a critical role in unlocking (or indeed blocking) your digital transformation.