Investigación de Operaciones Antologia | Page 37

Antología de Investigación de Operaciones Ingeniería en Sistemas Computacionales Ejemplo 2 (Modelo de transporte con equilibrio) En el ejemplo anterior suponga que la capacidad de la planta de Detroit es de 1 300 automóviles (en vez de 1 500). Se dice que la situación esta desequilibrada debido a que la oferta total (=3 500) no es igual a la demanda total (=3 700).Nuestro objetivo consiste en volver a formular el modelo de transporte de manera que distribuya la cantidad faltante(=3 700 – 3 500 = 200) en forma optima entre los centros de distribución. Como la demanda es mayor que la oferta se puede agregar una planta ficticia con una capacidad de 200. Se permite que dicha planta, en condiciones normales, envíe su “producción“ a todos los centros de distribución. Físicamente, la cantidad de unidades enviadas a un destino desde una planta ficticia representará la cantidad faltante en ese destino. La única información que falta para completar el modelo son los “costos de transporte” unitarios de la planta ficticia a los destinos. Como la planta no existe, no habrá ningún envío físico y el costo de transporte unitario es cero. Sin embargo, podemos enfocar la situación desde otro ángulo diciendo que se incurre en un costo de penalización por cada unidad de demanda insatisfecha en los centros de distribución. En este caso los costos de transporte unitarios serán iguales a los costos de penalización unitarios en los diversos destinos. Los Ángeles Detroit Nueva Orleáns Planta ficticia Denver 80 100 102 0 Miami 215 108 68 0 1 000 1 300 1 200 200 De manera análoga, si la oferta en mayor que la demanda podemos añadir un destino ficticio que absolverá la diferencia. Por ejemplo, suponga que la demanda en Denver disminuye a 1 900cualquier automóvil enviado de una planta a un centro de distribución ficticio representa un excedente en la planta. Los Ángeles Detroit Nueva Orleans Denver Miami 80 100 102 215 108 68 Destino Ficticio 0 0 0 1 000 1 500 1 200 La aplicación del modelo de transporte no se limita al problema de “transporte”. El siguiente ejemplo ilustra el uso del modelo del transporte en otros campos. 37