Ingenieur Vol 99 final July-Sept 2024 | Page 57

images . International Journal of Contents , Vol . 13 , No . 3
[ 16 ] Dobermann , A ., White , P . F . 1998 . Strategies for nutrient management in irrigated and rainfed lowland rice systems . Nutr . Cycl . Agroecosyst . 53 ( 1 ), 1 – 18
[ 17 ] Olk , D . C .; Cassman , K . G ., Simbahan , G ., Sta . Cruz , P . C ., Abdulrachman , S ., Nagarajan , R ., Tan , P . S ., Satawathananont , S . 1999 . Interpreting fertilizer-use efficiency in relation to soil nutrientsupplying capacity , factor productivity and agronomic efficiency . Nutr . Cycl . Agro- Ecosyst . 1621 , 35 – 41
[ 18 ] Peng , S ., Garcia , F . V ., Laza , R . C ., Sanico , A . L ., Visperas , R . M ., Cassman , K . G . 1996 . Increased N-use efficiency using a chlorophyll meter on high-yielding irrigated rice . Field Crops Res . 47 ( 2 – 3 ): 243 – 52
[ 19 ] Balasubramanian , V ., Morales , A . C ., Cruz , R . T ., Abdulrachman , S . 1999 . Onfarm adaptation of knowledge-intensive nitrogen management technologies for rice systems . Nutr . Cycl . Agroecosyst . 53 , 59 – 69
[ 20 ] Li , J ., Zhang , F ., Qian , X ., Zhu , Y ., Shen , G . 2015 . Quantification of rice canopy nitrogen balance index with digital imagery from unmanned aerial vehicle . Remote Sensing Letters . Volume 6 , Issue 3
[ 21 ] Teoh , C . C , Hassan , D . A ., Radzali , M . M ., Jafni , J . 2012 . Prediction of SPAD chlorophyll meter readings using remote sensing technique . Journal of Tropical Agriculture and Food Science ( JTAFS ), 40 ( 1 )
[ 22 ] Saberioon , M . M ., Gholizadeh , A . 2016 . Novel approach for estimating nitrogen content in paddy fields using low altitude remote sensing system . Proceeding of International Archives of the Photogrammetry , Remote Sensing and Spatial Information Sciences , Volume XLI-B1
[ 23 ] Zheng , H ., Cheng , T ., Li , D ., Zhou , X ., Yao , X ., Tian , Y ., Cao , W ., Zhu , Y . 2018 . Evaluation of RGB , color-infrared and multispectral images acquired from unmanned aerial systems for the estimation of nitrogen accumulation in rice . Remote Sens . 10 , 824
[ 24 ] Yue , J ., Lei , T ., Li , C ; Zhu , J . 2012 . The application of unmanned aerial vehicle remote sensing in quickly monitoring crop pests . Intelligent Automation and Soft Computing , Vol . 18 , No . 8 , pp . 1043-1052
[ 25 ] Zhang D , Zhou X , Zhang J , Lan Y , Xu C , Liang D . 2018 . Detection of rice sheath blight using an unmanned aerial system with high-resolution color and multispectral imaging . PLoS ONE . 13 ( 5 ): e0187470
[ 26 ] Huang , H ., Deng , J ., Lan , Y ., Yang , A ., Deng , X ., Zhang . 2018 . A fully convolutional network for weed mapping of unmanned aerial vehicle ( UAV ) imagery . PLOS ONE . 13 ( 4 ): e0196302
[ 27 ] Stropping , D ., Villa , P ., Sona , G ., Ronchetti , G ., Candiani , G ., Pepe , M ., Busetto , L ., Migliazzi , M ., Boschetti , M . 2018 . Early season weed mapping in rice crops using multi-spectral UAV data . International Journal of Remote Sensing 2018 , Vol . 39 , No . 15 – 16 , 5432 – 5452
[ 28 ] Raeva , P . L ., Šedina , J ., Dlesk , A . 2019 . Monitoring of crop fields using multispectral and thermal imagery from UAV . Eur . J . Remote Sens . 52 , 192 – 201 .
[ 29 ] Teoh C . C ., Mohd Nadzim N ., Mohd Shahmihaizan M . J ., Mohd Khairil I ., Faizal , K ., Mohd Shukry , H . B . 2016 . Rice yield estimation using below cloud remote sensing images acquired by unmanned airborne vehicle system . Advanced Science Engineering Information Technology . 6 , 516 – 519
[ 30 ] Zhou , X ., Zheng , H . B ., Xu , X . Q ., He , J . Y ., Ge , X . K ., Yao , X ., Cheng T ., Zhu , Y ., Cao , W . X ., Tian , Y . C . 2017 . Predicting grain yield in rice using multi-temporal vegetation indices from UAV-based multispectral and digital imagery . ISPRS Journal of Photogrammetry and Remote Sensing . 130 , 246 – 255
55